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an A Iron Foundry and Study of Their Resistance to Heavy Metals

Abstract

Background: Air pollution poses a significant environmental risk to health. Different investigations have shown the presence of 
bacteria in the atmosphere. However, few studies of air quality based on microbiological components have been carried out in Cuba. 

Objective: Of this research was to isolate and identify bacterial strains present in the workplace atmosphere of an iron factory and 
determine their resistance to heavy metals. 

Methods: Indoor air samples were collected from an iron foundry and viable plate counts were obtained on different selective 
growth Medias. To identify the bacteria of the pure cultures, their 16S rRNA genes were amplified and sequenced. To study the resis-
tance of the isolated bacteria, different concentrations of heavy metals were tested. 

Conclusion: In the iron smelting industry, the identified bacterial strains showed an increased resistance to the tested heavy metals, 
indicating that these metals are a driving force in the niche-adaptation of these airborne bacteria and can be harmful to health and 
even more if it is considered their resistance to tested metals. 

Keywords: Bacterial strains; Indoor air; Iron foundry; Heavy metals

Results: Eleven isolated bacteria belonging to six different species were identified using BLAST program: Pantoea agglomerans, 

Enterobacter cloacae, Staphylococcus aureus, Bacillus oceanisediminis, Bacillus flexus and Exiguobacterium aurantiacum. All bacterial 
strains showed an increase in the cell viability at high concentrations of Fe, Zn and Cu and, at low concentrations of Mn compared 
to the isolates without metal. However, all Pb concentrations tested resulted in an increase of the cell viability for E. aurantiacum, 
while this was only observed for B. oceanisediminis at high concentrations. S. aureus, B. oceanisediminis, P. agglomerans, B. flexus and 
E. aurantiacum showed increased cell viability at high concentrations of Sn while P. agglomerans, B. flexus and E. aurantiacum showed 
this increment at low concentrations.
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Environmental pollution is a problem that has increased in recent years, in accordance with the growing trend of population in-
crease and the corresponding increase in urban radius. In addition, the great development of productive and industrial activity has 
strongly impacted the physical and biological variables of the urban environment [Dales and Vidal 2010; Sanhueza., et al. 2009; USEPA 
2015; WHO 2014].

Air pollution poses a significant environmental risk to health, whether in developed or developing countries. According to the latest 
WHO estimates of the global burden of disease, indoor and outdoor air pollution cause about seven million premature deaths. This is 
currently one of the largest global health risks, comparable to tobacco-related risks, and only outweighed by the health risks associated 
with hypertension and nutrition. (WHO 2014)

The main air pollutants are particulate matter (PM), ozone (O3), nitrogen oxides (NOx) (especially nitrogen dioxide and trioxide [NO2 
and NO3]) and sulfur oxides (SOx). In the last years, different investigations have observed the presence of bacteria in the atmosphere 
[Barahona 2010; Després., et al. 2007; Fahlgren., et al. 2010; Smets., et al. 2016]. However, in Cuba few studies on the air quality have yet 
explored the presence of microorganisms in urban or rural environments. Instead, the investigations that have been carried out, focused 
on the physical and chemical characterization of the different atmospheric pollutants [Barja., et al. 2011; Núñez., et al. 2014].

Environmental contaminants of biological origin (bioaerosols) are constituted of particles, large molecules, and volatile organic 
compounds that come from living organisms. In bioaerosols microorganisms and their fragments, toxins and metabolic products can be 
found [Ghosh., et al. 2015; Fröhlich-Nowoisky., et al. 2016; Maldonado., et al. 2014]. The survival, reproduction and dispersion of biologi-
cal pollutants in the air depends to a large extent on the conditions of the environment in which they are found.  These conditions include 
the available resources and the key stress factors (such as desiccation, organic and inorganic pollutants and UV irradiation) [Smets., et al. 
2016]. Interestingly, not all atmospheric pollutants have a negative effect on the atmospheric bacteria. For instance, nitrogen monoxide 
(NO), carbon monoxide (CO) andhydrocarbons may have a protective or growth-promoting effect on microorganisms, depending on the 
species [Barahona 2010; Chandra., et al. 2005; De la Rosa., et al. 2002; Jones and Harrison 2003; Lin and Li 2000]. Yet, dispersal plays 
also a key role in the abundance of microorganisms in the air and this is dependent on various factors such as turbulent circulation, 
vehicles, wind, temperature, availability of water, amount of suspended dust, etc.

Heavy metal contamination is a widespread environmental problem because they are non-biodegradable and have the potential to 
accumulate in human and animal bodies. Most heavy metals are extremely toxic even at low concentrations depending on the solubil-
ity of the heavy metal compounds in water [Arora., et al. 2008, Park and Chon 2016]. Also bacteria interaction with metals (Suárez and 
Reyes 2002). Some heavy metals like copper (Cu), selenium (Se), and zinc (Zn) have been described as essential for maintaining me-
tabolism in living beings. However, for others such as mercury (Hg), lead (Pb) and cadmium (Cd) no biological function has been found 
[Suárez and Reyes 2002]. 

In this study, we aimed to explore the impact of heavy metals on bacteria that were isolated from the atmosphere of an iron foundry, 
to explore whether these bacteria show a resistance to heavy metals.
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Indoor air samples were taken at the iron foundry in Villa Clara (Cuba) using a low volume sampler MCV CPV-8D/A, in which air was 
bubbled in trypticase soy broth (TSB) in the equipment bubblers, for 8 hours. The samples were collected in sterile plastic vials, trans-
ferred to the laboratory, stored at 4°C and then processed.

A serial dilution of samples was made using Phosphate Buffered Saline (PBS) until a dilution of 10-6 was obtained. 75 μL of 10-4, 10-

5, and 10-6 dilutions each were inoculated on trypticase soy agar (TSA; Fluka Analytical, Sigma-Aldrich) and incubated at 37°C for 24h. 
This temperature was chosen to represent the Cuban climate. Individual colonies of different morphologies were subcultured twice in 
trypticase soy broth (TSB) at 37°C.  

To identify the isolates, their 16S rRNA genes were amplified and sequenced. For polymerase chain reaction (PCR) a partial colony 
was transferred to 10 µL PCR-grade H20 in a PCR tube and microwaved for 2 x 1.5 minutes at 700W. dNTPs, buffer and Taq polymerase 
(VWR) were added together with universal bacterial primers for the 16S rRNA gene: 27F (5’- AGAGTTTGATCCTGGCTCAG -3’) and 1492R 
(5’- GGTTACCTTGTTACGACTT -3’) (Eden., et al. 1991). The end concentrations were 1 μM of each primer in a final volume of 25 µL. 
Negative controls for master mix contamination were included. The amplification program was performed with an initial denaturation 
step of 2 min at 95°C; followed by 30 cycles of 30 seconds at 95°C, 30 seconds at 55°C and 1 minutes 30 seconds at 72°C; and a final ex-
tension step at 72°C for 5 minutes. The PCR products were visualized on a 1% agarose gel and those that showed clear bands were sent 
for Sanger sequencing with both the 27F and 1492R primer (VIB Genetic Service Facility, Antwerp, Belgium). The resulting sequences 
were compared to the NCBI database using the Basic Local Alignment Search Tool (BLAST; http://blast.ncbi.nlm.nih.gov/) to classify the 
selected isolates at species or genus level.

The sensitivity of the bacteria to heavy metal ions was determined by growing the isolates in TSB with the added heavy metal. Six dif-
ferent concentrations of  iron (Fe), Zn, Cu, Pb, tin (Sn), aluminium (Al) and manganese (Mn) were tested in the form of their salts, iron(II) 
sulphate heptahydrate (FeSO4∙7H2O), zinc sulphate heptahydrate (ZnSO4∙7H2O),  copper(II) sulphate pentahydrate (CuSO4∙5H2O), lead(II) 
chloride (PbCl2), tin(II) chloride nonahydrate (SnCl2∙9H2O), aluminium sulphate octadecahydrate (Al2(SO4)3∙18H2O) and manganese(II) 
sulphate monohydrate (MnSO4∙H2O) (see Table 1), taking into account the values of each metal obtained in a 12-hour sampling period 
[Alejo 2017] (Figure 1). 

Culturing

Identification of strains 

Heavy metal resistance

Concentration FeSO4∙7H2O 
(mM)

Al2(SO4)3∙18H2O 
(mM)

ZnSO4∙7H2O 
(mM)

CuSO4∙5H2O 
(mM)

PbCl2 
(mM)

SnCl2∙9H2O 
(mM)

MnSO4∙H2O 
(mM)

1 3.6 2.3 2.5 2.5 2.5 2.5 2.5
2 2 1.25 1.25 1.25 1.25 1.25 1.25
3 0.5 0.12 0.12 0.1 0.1 0.1 0.1
4 0.09 0.06 0.06 0.006 0.006 0.003 0.003
5 0.06 0.04 0.03 0.003 0.003 0.002 0.002
6 0.01 0.01 0.001 0.0006 0.0002 0.0007 0.0009

Table 1: Concentrations tested for the heavy metals.

http://blast.ncbi.nlm.nih.gov/
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Working solutions of metals were prepared by diluting the stock solutions with TSB 30 minutes prior to use. Each condition was 
tested in triplicate using a 96-well format with 100 µL final volume per well. In addition, duplicate controls for each metal concentration 
in absence of bacteria, for each tested isolate in absence of metal, and with pure TSB were included and used for normalization.

After incubation at 37oC for one hour, 10 μL of alamarBlue® (DAL1025, Thermo Fisher Scientific) was added to each well. Absor-
bance at 570 nm and 600 nm was read after 1h and 4h using the Synergy HTX plate reader (Biotech Instruments, Inc.) and the cell vi-
ability was calculated with the following formula:

Three samples were collected from the iron foundry in Villa Clara (Cuba). The samples were grown in trypticase soy agar and 11 
isolates were obtained. The identified bacterial strains and their GenBank accession numbers are shown in Table 2.  

Of the 11 isolates identified, the resistance to heavy metals was determined for F2 (E. cloacae), F7 (S. aureus), F8 (B. oceanisediminis), 
F9 (P. agglomerans), F10 (B. flexus) and F11 (E. aurantiacum), since the other isolates were similar to F2 and F9. 

Iron caused a decrease in viability at the lowest concentrations and an increase of the same at the high concentrations in all tested 
isolates compared to the isolates without metal (Figure 2) In the case of aluminium, a decrease in viability was observed for all isolates 
and at all concentrations, with the exception of isolates E. cloacae, B. oceanisediminis and B. flexus, which displayed an increase in viability 
at a concentration of 0.1 mM. (Figure 2)

E. cloacae showed a decrease in viability in the presence of 0.1 mM tin but a continuous increase at higher concentrations, without 
achieving the viability of the isolate without the metal. In contrast, for S. aureus and B. oceanisediminis, the viability at the highest con-
centration (2.5 mM) of tin was higher than that of the isolates without metal, while for the other isolates the viability decreased. For P. 
agglomerans, B. flexus and E. aurantiacum the viability increased at all concentrations of tin, showing a greater increase at the higher 
concentration and in the case of P. agglomerans also a very high viability at the lowest concentration. (Figures 2)

Results

Figure 1: Metal concentrations in iron-foundry air. Mean, 

Min and Max values of 12-hour measurements.
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Bacterial strain Name % Identity NCBI Accession

F1 Pantoea agglomerans 99% KU935452.1
F2 Enterobacter cloacae 99% CP009850.1
F3 Enterobacter cloacae 99% CP009850.1
F4 Enterobacter cloacae 99% CP009850.1
F5 Pantoea agglomerans 99% KU935452.1

Figure 2: Percent Alamar Blue reduction in the presence of heavy metals.
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In the case of lead, for the bacterial strains E. cloacae, S. aureus, P. agglomerans and Bacillus flexus the viability decreased for all 
concentrations, in agreement with lead being toxic. In contrast, in the case of B. oceanisediminis it only increased slightly at the highest 
concentration, whereas for E. aurantiacum it increased slightly for the concentrations of 0.003, 0.006, 1.25 and 2.5 mM (Figures 2)

With manganese, E. cloacae and S. aureus showed a decrease in their cellular viability at the highest concentrations of 1.25 and 2.5 
mM, with a slight increase compared to the isolates without metal at all other concentrations. The viability of B. oceanisediminis only 
decreased at the highest concentration. In contrast, for P. agglomerans and B. flexus a decrease in viability was observed at all concen-
trations except for 0.0009 mM and 0.002 mM. Finally, the viability of E. aurantiacum decreased from 0.1 mM onwards (Figure 2). At a 
copper concentration of 1.25 and 2.5 mM, all the bacterial strains showed increased viability compared to isolates without metal. In 
contrast, their viability decreased at lower copper concentrations, with the exception of S. aureus, B. flexus and E. aurantiacum, for which 
the viability was also increased at a concentration of 0.1 mM (Figure 2). Lastly, zinc increased the viability of all tested isolates and at all 
concentrations. (Figure 2).  

In an iron smelting industry in the province of Villa Clara bacteria belonging to the phyla Proteobacteria and Firmicutes were identi-
fied. The phylum Firmicutes was most frequently represented with genera such as Bacillus, Staphylococcus and Exiguobacterium. These 
results agree with those obtained by [Di Giorgio., et al. 1996 and Méndez., et al. 2015], who reported that gram positive bacteria tend to 
be dominant in the cultivable fraction of air samples. These gram positive genera are more resistant to dry or adverse conditions because 
they have a thicker and peptidoglycan-rich cell wall [Atlas and Bartha 1997; De la Rosa., et al. 2002]. Also, the most abundant genus was 
Bacillus, which has the ability to form endospores, a latent structure that ensures its survival under stress conditions such as the envi-
ronmental factors found in the atmosphere [Nicholson 2000].

The phylum Proteobacteria is a major phylum of gram-negative bacteria. The genera identified from the isolates were Enterobacter 
and Pantoea, belonging to the group of Gammaproteobacteria. Bacteria of the genus Enterobacter are responsible for a wide variety of 
diseases such as nosocomial infections in neonates and immunosuppressed patients and are difficult to treat because they have devel-
oped resistance to a large number of antibiotics [Correa., et al. 2012; Walterson and Stavrinides 2015]. Pantoea sp. are gram negative ba-
cilli belonging to the family Enterobacteriaceae [Sánchez., et al. 2006]. The term Pantoea derives from the Greek word Pantoios meaning 
“of all types and sources” describing the wide geographical and ecological distribution of bacteria belonging to this genus [Rostenberge., 
et al. 2006; Sánchez., et al. 2006].

Bacteria have developed various resistance mechanisms to tolerate the harmful effects of toxic metals [Silver and Phung 2005]. 
Among them are mainly those that involve: a) cellular components that capture the ions, neutralizing their toxicity, b) enzymes that 
modify the redox state of the metals or metalloids, turning them into less toxic forms, and c) membrane transporters that expel the harm-
ful species from the cytoplasm [Cervantes., et al. 2006]. 
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Discussion 

F6 Enterobacter cloacae 99% CP009850.1
F7 Staphylococcus aureus 99% CP014444.1
F8 Bacillus oceanisediminis 99% CP015506.1
F9 Pantoea agglomerans 97% KU935452.1

F10 Bacillus flexus 99% KU236365.1
F11 Exiguobacterium aurantiacum 99% KU922496.1

Table 2: Identification of bacterial strains and Gen Bank accession.
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Several heavy-metals are essential cofactors required in trace concentrations by bacteria (nanomolar range); however, they are toxic 
in higher concentrations [Marrero., et al. 2010]. Iron is an essential element for practically all living organisms, which require it for im-
portant cellular functions such as DNA synthesis, respiration and detoxification of free radicals [Aguado., et al. 2012].

Recently it has been described that all the Cation Diffusion Facilitator (CDF) proteins that have been studied so far in bacteria are 
involved in resistance to Zn (II) and other heavy metal cations [Marrero., et al. 2010]. One of the genera identified in our research and 
that is resistant to the greatest variety of metals is the genus Bacillus. The presence of this genus in contaminated sites is widely reported 
in the literature [Montenegro 2007]. Members of this genus produce organic acids capable of binding the metals in the soil. Bacteria are 
capable of generating extracellular polymers that sequester metals and intervene in the processes of mobilization and immobilization 
of these elements. The secretion of siderophores which specifically trap Fe3+ ions important for the growth of microorganisms has also 
been extensively studied [Fingerman and Nagabhushanan 2005; Suarez and Reyes 2002].

Several studies have demonstrated the tolerance of Bacillus sp to environments contaminated with metals such as Pb as well as Cu, 
Al, Mn and Zn [Herrera 2014; Murthy., et al. 2012]. In (1986) Nakajima and Sakaguchi already reported the ability of these bacteria to 
accumulate metals. Other studies also reported resistance of Bacillus sp. to various heavy metals [Ali., et al. 2009; Cañizares 2000; Dhal., 
et al. 2013].

Bacteria that are known to adsorb heavy metals include genera of Bacillus [Nagashetti., et al. 2013; Vijayaraghavan and Yun 2008]. 
Although there were some studies on the removal of heavy metals by Exiguobacterium sp. [Alam and Ahmad 2013; Batool., et al. 2014], 
Cd and Pb biosorption by these bacteria, especially when isolated from contaminated sites and under diverse environmental conditions, 
was not investigated. Alam and Ahmad (2013) investigated Cd, Nickel (Ni), Cu, and Zn biosorption from aqueous solutions by Exiguobac-
terium sp. ZM-2, but biosorption was not tested in mixed metal solutions. The selective biosorption of Cd and Pb by Exiguobacterium sp. 
was observed by Park and Chon (2016).

According to the literature, Staphylococcus aureus is resistant to metals by the mechanism of expulsion by type P ATPase (CadA) (Ji., 
et al. 1994; Novick., et al. 1979; Nucifora., et al. 1989; Yoon., et al. 1991) and by the CDF-type (RzcB) expulsion mechanism [Xiong., et al. 
1998].

Several studies [Adelaja and Keenan 2012; Campos., et al. 1995; Dash., et al. 2013; Kavamura and Esposito 2010; Sinha., et al. 2012; 
Wang., et al. 1989] reported resistance of Enterobacter cloacae to heavy metals. These genera have been reported in the literature as 
resistant to multiple antibiotics [Alósa 2015; Castañeda., et al. 2009; Martínez., et al. 2010; Vanegas., et al. 2009] and as observed here, 
also show resistance to various heavy metals. The correlation of resistance to heavy metals and antibiotics between clinical and envi-
ronmental isolates is important and has been well studied. Experimental investigations indicate that increased exposure to these metals 
alters several parameters of the immune system and lead to increased susceptibility to infections, autoimmune diseases and allergic 
manifestations as well as damage to the Central Nervous System [Atencio., et al. 2005].

Genes have been reported, not associated with mobile elements, which can encode determinants of resistance to antibiotics and 
heavy metals.  This chromosomal arsenal of resistance elements together with a membrane of low permeability have been proposed as 
responsible for a multi-resistant intrinsic phenotype that is independent of the environment in which some bacteria live [Cervantes., et 

al. 2006; Ramakrishna and Kefeng 2011]. 

Thus, the indiscriminate use of antibiotics, for human consumption, as well as for veterinary and agricultural purposes, is the main 
factor for the selection of bacteria resistant to these chemical compounds. In addition, the high environmental contamination by heavy 
metals favors the selection of strains resistant to antibiotics, when the genes responsible for these resistances are on the same plasmid 
[Paniagua., et al. 2003].
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