

Research Article Oral Health and Dentistry

ISSN: 2573-4989

Boltons Ratio among South Indian Population

Abdul Jamih¹, Shahnawaz Khijmatgar^{2*}, Vikram Shetty³, US Krishna Nayak⁴ and Chitta Chowdhury²

- ¹Lecturer, Department of Craniofacial Orthodontics, A.B. Shetty Memorial Institute of Dental Sciences, Nitte University, Deralakate-575018, Mangalore, Karnataka India
- ²Department of Oral Biology and Genomic Studies, A.B. Shetty Memorial Institute of Dental Sciences, Nitte University, Deralakate-575018, Mangalore, Karnataka India
- ³Director, Nitte Meenakshi Institute of Craniofacial Surgery, Nitte University, Deralakate-575018, Mangalore, Karnataka India
- ⁴Principal and Dean, A.B. Shetty Memorial Institute of Dental Sciences, Nitte University, Deralakate-575018, Mangalore. Karnataka India

*Corresponding Author: Shahnawaz Khijmatgar, Department of Oral Biology and Genomic Studies, A.B. Shetty Memorial Institute of Dental Sciences, Nitte University, Deralakate-575018, Mangalore, Karnataka India.

Received: April 07, 2018; Published: April 18, 2018

Abstract

Background: Indian being a diverse country, different ethnic populations have different types of occlusions. This has an impact on factors influencing the treatment planning in orthodontics and outcome. The objective of this study is to assess and compare the boltons ratio in all angles class of malocclusions of south Indian population.

Material and Methods: A total of 300 casts were included from the Department of Craniofacial Orthodontics in Dental College of South India. The inclusion and exclusion criterion was determined. The casts were categorised into Class I (N = 135), Class II division 1 (N = 74) and 2 (N = 3), Class III (N = 6) angles of malocclusion. The overall and anterior tooth ratio was determined using Boltons method. A statistical test was done by determining the mean, SD, chi square test, Fishers exact test and Kruskall wallis.

Results: The overall bolton ratio was found to be 91.13 per cent. The anterior Bolton ratio was 78.82 per cent. There was no statistical significant association found between the different classes of malocclusions.

Conclusion: The overall ratio was found to be within the boltons ratio but the anterior ratio was found to be increased in different class of malocclusions.

Key Words: Angles class of malocclusions; Boltons ratio; South Indian population; Class I; Class II; and Class III

Volume 3 Issue 1 April 2018

© All Copy Rights are Reserved by Abdul Jamih., et al.

Introduction

Boltons ratio was first introduced by W. A. Bolton in 1958 [1]. It is the analysis of space discrepancy in the tooth of maxilla and mandible. It helps to determine the optimum inter-arch relationship by quantifying the mesio-distal widths of the anterior teeth. In Boltons ratio anterior ratio and overall ratio is used. The patients are more concerned about the aesthetics in the anterior region. The crowding and spacing are more pronounced in the anterior region. Hence, anterior teeth ratio becomes significant in clinical decision making in orthodontics. The anterior segment ratio is $77.2 \pm 0.22\%$. Overall ratio is obtained by adding the widths of the 12 mandibular teeth divided by the sum of the widths of the 12 maxillary teeth and the ratio is $91.3 \pm 0.26\%$ [2]. A recent study highlighted the boltons ratio for different ethnic groups. The anterior tooth ratio like between 77.2% and 80.62%. Similarly, the overall ratio lies in the 89.8% and 93.39% [1, 3].

The prevalence of anterior tooth ratio among orthodontic patients is between 17% and 31% and 20.5% in non-orthodontic patients [4,5]. The significance of boltons ratio as previously mentioned has an impact on clinical outcome [2]. It has been validated through many studies on different ethnic populations including India [3]. A study by Shastri D (2015) tried to look at the boltons ratio in north Indian populations with different malocclusions and he found that Angle's Class II patients showed a tendency toward wider mesio-distal widths of teeth in the mandibular anterior region or smaller tooth sizes in the maxillary anterior region [1].

Basaran., *et al.* (2006) studied casts of 300 patients and divided the casts into Class I, Class II division 1, Class II division 2, and Class III angles of malocclusion. The author concluded that, there was no statistically significant difference among different groups of malocclusions [6]. Other studies have found differences among different class of angles of malocclusion [7-10].

Wedrychowska-Szulc., et al. (2010) used 600 casts with different class of angles malocclusion. He found that, the overall ratio among all groups and anterior tooth size ratio between Class I and Class III groups was statistically significant [11]. Araujo and Souki (2003) tried to determine the association between tooth size discrepancy in the anterior region and Class I, II, and III angles malocclusions of 300 Brazilian patients. The author found that, there was higher prevalence of tooth size discrepancies in the anterior region of class I and class III. The anterior tooth ratio was found to be higher for the patients with Class III malocclusion than in those with Class I and Class II malocclusions [12].

The Boltons ratio for South Indian population is poorly reported. Hence, the objective of our study is to determine the overall ratio and anterior teeth ratio for South Indian population applying for orthodontic treatment and later comparing with the Bolton's standards.

Materials and Methods

The study was done at Department of Oral Biology and Genomic Studies and Craniofacial Orthodontics at A.B. Shetty Memorial Institute of Dental Sciences, Mangalore Deralakate Nitte University, Karnataka India. The data was gathered using the study casts selected from 300 patients that previously came to the Department for Craniofacial Orthodontics for treatment during the period of 2013-16 from Southern part of India. Each patient had a cephalometric radiograph. The models were classified according to the Angles maloc-clusion i.e. Class I (N = 135), Class II division 1 (N = 74) and 2 (N = 3), Class III (N = 6) angles of malocclusion using molar and canine relationship. All measurements were done on the study models.

The inclusion criteria were:

- 1. Between the age of 12 to 35 years
- 2. Fully erupted permanent teeth in both maxillary and mandibular arches
- 3. Records, Study cats, panoramic views, lateral cephalograms
- 4. Clinical Diagnosis of Class I, II and III malocclusions
- 5. Molar to molar teeth present

The overall ratio and anterior tooth ratio was determined by the following standard formula;

Overall ratio

$$Determination of Overall Ratio = \frac{Sum of Mandibular 12}{Sum of maxillary 12} \times 100$$

Anterior tooth Ratio

Sum of Maxillary 6 = the sum of mesio-distal width of all the teeth from maxillary canine to canine = mm

Determination of Anterior Ratio

Anterior ratio = Sum of mandibular 6 x 100/Sum of maxillary 6

Statistical Analysis

The collected data was analysed by frequency, percentage, mean and standard deviation, chi square test, Fishers exact test and Kruskall wallis test was used to derive the significance.

Results

Malocclusion	Gender		Total
group	Male N (%)	Female N (%)	N (%)
Class I	58 61.1%	77 62.6%	135 61.9%
Class II division 1	32 33.7%	42 34.1%	74 33.9%
Class II division 2	0.0%	3 2.4%	3 1.4%
Class III	5 5.3%	1.8%	6 2.8%
Total	95 100.0%	123 100.0%	218 100.0%

Table 1: Gender distribution between the groups investigated.

Class of malocclusion	Sample size (N)	Mean	Std. Division	Kruskal wallis test value	P < 0.05
Class I	135 (62.21%)	19.23	5.596		
Class II division 1	74 (34.10%)	18.09	4.018	2.398	0.494
Class II division 2	3 (1.38%)	17.67	2.082	2.390	0.494
Class III	6 (2.76%)	19.80	2.950		
Total	217	18.83	5.041		

Table 2: Age distribution between the groups investigated.

Gender	Class of Malocclusion	N	Minimum	Maximum	Mean	Std. Deviation	Median	C.V (%)	Kruskal wallis test value	р
Male	Class I	58	83.000	97.900	92.033	2.861	92.035	3.11	4.812	0.090
	Class II Division 1	32	77.700	97.100	89.951	4.443	90.210	4.94		
	Class III	5	88.700	94.230	91.978	2.421	92.900	2.63		
	Total	95	77.700	97.900	91.329	3.563	91.790	3.90		
Female	Class I	77	62.200	100.000	91.070	4.827	91.300	5.30	0.444	0.931
	Class II Division 1	42	77.400	97.700	90.703	4.255	91.650	4.69		
	Class II Division 2	3	90.900	95.000	92.467	2.214	91.500	2.39		
	Class III	1	91.300	91.300	91.300		91.300			
	Total	123	62.200	100.000	90.980	4.557	91.500	5.01		

Table 3: Overall ratio.

Gender	Class of Malocclusion	N	Mini- mum	Maxi- mum	Mean	Std. Deviation	Median	C.V (%)	Kruskal wallis test value	р
Male	Class I	58	72.200	94.600	79.205	4.237	78.780	5.35	0.171	0.918
	Class II Division 1	32	58.800	89.000	78.203	5.508	78.050	7.04		
	Class III	5	76.000	82.600	78.954	2.442	78.800	3.09		
	Total	95	58.800	94.600	78.854	4.622	78.720	5.86		
Female	Class I	77	70.000	90.600	78.848	3.885	78.260	4.93	0.150	0.985
	Class II Division 1	42	64.100	91.900	78.789	4.954	78.970	6.29		
	Class II Division 2	3	74.500	80.400	78.133	3.179	79.500	4.07		
	Class III	1	77.630	77.630	77.630		77.630			
	Total	123	64.100	91.900	78.801	4.224	78.500	5.36		

Table 4: Anterior tooth Ratio.

N	Class of Malocclusion	N	Minimum	Maximum	Mean	Std. Deviation	Median	Co-efficient of variation (%)	Kruskal wallis test value	р
Ratio	Class I	135	62.200	100.000	91.484	4.114	91.500	4.500	2.382	.497
(%)	Class II Division 1	74	77.400	97.700	90.378	4.323	91.300	4.780		NS
	Class II Division 2	3	90.900	95.000	92.467	2.214	91.500	2.390		
	Class III	6	88.700	94.230	91.865	2.183	92.100	2.380		
	Total	218	62.200	100.000	91.132	4.148	91.500	4.550		
Maxi	Class I	54	.050	7.000	2.431	1.787	2.000	73.510	2.317	.509
(mm)	Class II Division 1	35	.100	13.200	3.243	3.116	2.600	96.070		NS
	Class II Division 2	1	.400	.400	.400		.400			
	Class III	2	1.230	3.200	2.215	1.393	2.215	62.890		
	Total	92	.050	13.200	2.713	2.393	2.000	88.210		

Mand	Class I	81	.174	8.040	2.577	2.072	2.090	80.380	1.182	.757
(mm)	Class II Division 1	39	.172	6.100	2.084	1.543	1.900	74.030		NS
	Class II Division 2	2	.300	3.500	1.900	2.263	1.900	119.090		
	Class III	4	.200	3.040	1.725	1.309	1.830	75.900		
	Total	126	.172	8.040	2.387	1.903	2.020	79.740		

*NS = Not Significant

Table 5: Total Overall Ratio.

N	Class of Malocclusion	N	Minimum	Maximum	Mean	Std. Deviation	Median	Coefficient of variation (%)	Kruskal wallis test value	р
Ratio	Class I	135	70.000	94.600	79.001	4.029	78.300	5.100	.031	.999
(%)	Class II Division 1	74	58.800	91.900	78.536	5.172	78.650	6.590		NS
	Class II Division 2	3	74.500	80.400	78.133	3.179	79.500	4.070		
	Class III	6	76.000	82.600	78.733	2.250	78.285	2.860		
	Total	218	58.800	94.600	78.824	4.392	78.535	5.570		
Maxi	Class I	45	.070	9.600	1.609	1.671	1.000	103.850	.179	.915 NS
(mm)	Class II Division 1	25	.020	6.850	1.614	1.602	.960	99.220		
	Class III	1	.770	.770	.770		.770			
	Total	71	.020	9.600	1.599	1.626	.960	101.690		
Mand	Class I	90	.000	5.810	1.751	1.451	1.400	82.890	4.116	.249
(mm)	Class II Division 1	49	.090	12.100	2.415	2.321	1.800	96.130		NS
	Class II Division 2	3	1.170	1.800	1.490	.315	1.500	21.150		
	Class III	5	.240	2.480	1.006	.912	.800	90.610		
	Total	147	.000	12.100	1.941	1.792	1.480	92.300		

*NS = Not Significant

Table 6: Total anterior tooth ratio.

Gender	Class of malocclusion	Sample size (N)]	Frequency of ov ratio discrepa	Frequency to anterior ratio discrepancy		
			Total (%)			Relative Maxillary Excess (%)	Relative Mandibular Excess (%)
Male	Class I	58	26.60%	34.5%	65.5%	34.5%	65.5%
	Class II division 1	32	14.67%	53.1%	46.9%	31.3%	68.8%
	Class III	5	2.29%	40.0%	60.0%	20.0%	80.0%
	Total	95	43.57%	41.1%	58.9%	32.6%	67.4%
Female	Class I	77	35.32%	44.2%	55.8%	32.5%	67.5%
	Class II division 1	42	19.26%	42.9%	57.1%	37.7%	64.3%
	Class II division 2	3	1.37%	33.3%	66.7%	.0%	100.0%
	Class III	1	0.458% .0% 100.0%		100.0%	.0%	100.0%
	Total	218	56.42%	43.1%	56.9%	32.5%	67.5%

 Table 7: The frequency of Bolton tooth size discrepancies exceeding 2 SD.

Discussion

Our study results found that, the mean overall Bolton ratio was 91.13 per cent which is within the boltons standard. The overall boltons ratio for males was 91.32 per cent and for females was 90.98 per cent. The boltans ratio for females was found to be slightly less compared to males in overall boltons standard. The overall ratio was higher for class II division 2 and Class III malocclusion (Table 5). We found that the mean overall ratio for class I patients was 91.48 ± 4.11 , which is within the normal boltons limits. Other malocclusions like, class II division 1 was 90.37 ± 4.32 , class II division 2 was 92.46 ± 2.21 and class III was 91.86 ± 86 . The sample sizes for the class II division 1 and 2 and class III were less and it is difficult to justify that the results found are higher compared to boltons ratio. No statistical difference was found between mean overall ratio and angles class of malocclusions (Table 3). The results were similar to the previous studies [16,18,21,22]. But other studies showed statistical differences in overall ratio and angles class of malocclusion [9-11]. The possible explanation for this may be due to the differences in the racial groups, in the dimensions and proportions of the teeth [12].

The total mean anterior bolton ratio was 78.82 per cent. The anterior tooth ratio is higher compared to bolton's standard for all angles malocclusion groups and for both genders (Table 4,6). The anterior tooth ratio for males was 78.85 percent and for females was 78.80 percent. There was no significant difference in anterior tooth ratio between gender and type of malocclusion (Table 4). Our results co-relate with the previous reports [7-11]. The anterior tooth size (maxillary teeth) particularly lateral incisor differs within the populations. The anterior tooth size discrepancy is observed in greater percentage of patients compared to the discrepancies in overall ratio. The possible explanation to this finding is that, the size of the anterior teeth has mathematically, less effect on overall ratio [6]. The mean anterior ratio calculated was 79.00 ± 4.02 for class I malocclusion. The anterior tooth ratio was higher for all angles classes of malocclusions (Table 6) [20].

A study on North Indian populations (2015) found that, the overall ratio was $91.36\% \pm 2.13$ and the anterior tooth ratio was $78.14\% \pm 4.09$. The overall ratio is within the boltons standard but anterior tooth ratio was higher than the boltons standard. This indicates greater mesio-distal widths in the mandibular anterior segment in north Indian population [1]. The results of anterior tooth ratio of this study were similar to our study.

A study by Cancodo RH (2015) compared the overall and anterior ratios of tooth size discrepancies in all types of angles malocclusion groups using a sample size of 711 pre-orthodontic study casts from Brazil. The average mean age was 17.42 years. The sample was consisting of Class I (n = 321), Class II (n = 324) and Class III (n = 66). The authors found that, with respect to the overall and anterior ratios among the malocclusion groups, no statistically significant differences were found [12]. No significant difference was found between any of the angles malocclusion patients. No correlation was found between Angle's classification of malocclusion and Bolton discrepancy as shown by Crosby and Alexander.

A study on Polish population by Bielawska (1994) used 51 orthodontic patients with different malocclusions, also did not find any statistically significant differences in different class of malocclusions [12]. The possible reason for the results of our study and polish study is that, it is unlikely that sample size will affect the Bolton's results. Previous reports have found opposite to our findings. The reason might also be due to the geographical location.

The frequency of Bolton tooth size discrepancies exceeding 2SD for overall ratio was 48.76%. Similarly, the frequency of Bolton tooth size discrepancies exceeding 2SD for anterior tooth ratio was 67.5% (Table 7). According to Crosby and Alexander, any figure outside two standard deviations from Bolton's mean represent 2 to 3 mm tooth size discrepancy which must be considered clinically significant. In the current study, it was found that 67.5% had increased anterior tooth size ratios and has increased mandibular tooth size excess. According to Batool., et al. skeletal class II patients showed a tendency toward higher mesio-distal widths of teeth in the mandibular anterior region. Our study found the similar results [20].

The limitations of our study were the lesser number of sample size for the class II division 2 and Class III. We found less number of cases who found to be fit into the criteria for the study and lower number of cases coming to the hospital from southern part of India.

Conclusion

The total anterior tooth ratio was greater than the Bolton's tooth ratio for all angles malocclusions among South Indian populations. However, there was no statistical significance in overall and anterior tooth ratio among all angles class of malocclusions. The results show that, there is increased mandibular excess.

Key Message

It is clinically significant to consider Bolton's ratios during orthodontic treatment planning among south Indian population.

Conflict of Interest

No conflict of interest.

Acknowledgement

None

References

- 1. Shastri D., et al. "Bolton ratio in a North Indian population with different malocclusions". Journal of orthodontic science 4.3 (2015): 83
- 2. Wędrychowska-Szulc B., *et al.* "Overall and anterior Bolton ratio in Class I, II, and III orthodontic patients." *The European Journal of Orthodontics* 32.3 (2010): 313-318.
- 3. Jhala VJ., et al. Bolton's Ratios for Indian Population, Can We Follow the Ideal Standards Blindly?
- 4. Endo T., *et al.* "Tooth size discrepancies among different malocclusions in a Japanese orthodontic population". *The Angle Orthodontist* 78.6 (2008): 994-999.
- 5. Strujic M., et al. "Tooth size discrepancy in orthodontic patients among different malocclusion groups". European Journal of Orthodontics 31.6 (2009): 584-589.
- 6. Basaran G., et al. "Intermaxillary Bolton tooth size discrepancies among different malocclusion groups". *The Angle Orthodontist* 76.1 (2006): 26-30.
- 7. Araujo E and Souki M. "Bolton anterior tooth size discrepancies among different malocclusion groups". *The Angle Orthodontist* 73.3 (2003): 307-313.
- 8. Arya BS., et al. "Relation of sex and occlusion to mesiodistal tooth size". American Journal of Orthodontics and Dentofacial Orthopedics 66.5 (1974): 479-486.
- 9. Nie Q and Lin J. "Comparison of intermaxillary tooth size discrepancies among different malocclusion groups". *American Journal of Orthodontics and Dentofacial Orthopedics* 116.5 (1999): 539-544.
- 10. Sperry TP., et al. "Tooth-size discrepancy in mandibular prognathism". *American Journal of Orthodontics and Dentofacial Orthopedics* 72.2 (1977): 183-190.
- 11. Wędrychowska-Szulc B., et al. "Overall and anterior Bolton ratio in Class I, II, and III orthodontic patients." *The European Journal of Orthodontics* 32.3 (2010): 313-318.
- 12. Cançado Rh., et al. "Association between Bolton discrepancy and Angle malocclusions". Brazilian oral research 29.1 (2015): 1-6.
- 13. Othman SA and Harradine NW. "Tooth-size discrepancy and Bolton's ratios: a literature review". *Journal of orthodontics* 33.1 (2006): 45-51.
- 14. Arya B S., et al. "Relation of sex and occlusion to mesiodistal tooth-size". American Journal of Orthodontics 66.5 (1974): 479-486.
- 15. Sperry T P., et al. "Tooth-size discrepancy in mandibular prognathism". American Journal of Orthodontics 72.2 (1974): 183-190.
- 16. Crosby D R and Alexander C G. "he occurrence of tooth size discrepancies among different malocclusion groups". *American Journal of Orthodontics and Dentofacial Orthopedics* 95.6 (1989): 457-461.
- 17. Nourallah A W., *et al.* "Standardizing interarch tooth-size harmony in a Syrian population". *Angle Orthodontist* 75.6 (2005): 996–999.

Citation: Abdul Jamih., et al. "Boltons Ratio among South Indian Population". Oral Health and Dentistry 3.1 (2018): 520-527.

- 18. Uysal T and Sari Z. "Intermaxillary tooth size discrepancy and mesiodistal crown dimensions for a Turkish population". *American Journal of Orthodontics and Dentofacial Orthopedics* 128.2 (2005): 226–230.
- 19. Bielawska H. "Wskaźnik Boltona a niektóre wady zgryzu". Czasopismo Stomatologiczne 47 (1994): 360-362.
- 20. Hasija N., *et al.* "Estimation of Tooth Size Discrepancies among Different Malocclusion Groups". *International Journal of Clinical Pediatric Dentistry* 7.2 (2014): 82-85.
- 21. Carreiro LSSPA., *et al*. "Bolton tooth size discrepancy in normal occlusion and in different types of malocclusions and its relationship to arch form and tooth positioning". *R Dental Press Orthodon Ortop Facial* 10.3 (2005): 97-117.
- 22. O'Mahony G., et al. "Tooth size discrepancies in Irish orthodontic patients among different malocclusion groups". *The Angle Orthodontist* 81.1 (2011): 130-133.

Submit your next manuscript to Scientia Ricerca Open Access and benefit from:

- → Prompt and fair double blinded peer review from experts
- → Fast and efficient online submission
- → Timely updates about your manscript status
- → Sharing Option: Social Networking Enabled
- → Open access: articles available free online
- → Global attainment for your research

Submit your manuscript at:

https://scientiaricerca.com/submit-manuscript.php