

Review Article Nutrition and Food Toxicology ISSN: 2573-4946

Health Aspects of Nutritional Fats and Oils. A Review of Recent Findings

Ulrich Keller*

University of Basel, and Endocrine Practice, Missionsstr. 24 CH-4055 Basel, Switzerland

*Corresponding Author: Ulrich Keller, University of Basel, and Endocrine Practice, Missionsstr. 24, Switzerland.

Received: April 05, 2018; Published: April 17, 2018

Abstract

Current guidelines of professional organizations and governmental health authorities recommend to limit the consumption of saturated fats for the prevention of chronic diseases such as cardiovascular disease, and to propose upper limits for the intake of monoand polyunsaturated fatty acids.

The present review of meta-analyses of prospective cohort studies and of randomized controlled trials published during the past 5 years indicates that these recommendations may need certain revisions. Regarding cardiovascular disease, current data suggest that intake of total and saturated fat (in % of energy intake) is not clearly associated with cardiovascular morbidity and mortality. A small benefit regarding cardiovascular risk results from reduction of saturated fat when it is replaced by polyunsaturated fat. This benefit was not observed in patients with established CVD.

According to recent data consumption of n-6 PUFA acid has been associated with diminished (and not with increased) cardiovascular morbidity and mortality, and there is insufficient evidence to prioritize a specific type of unsaturated fats replacing other macronutrients such as saturated fats or starchy or sugary foods.

Concerning risk of diabetes type 2, recent data show that total fat or saturated fat intake are not clearly associated with increased risk. In contrast, increased consumption of MUFA, olive oil and in some instances of PUFA have been associated with diminished diabetes risk and with improved metabolic control in patients with established diabetes when carbohydrates were replaced by MUFA.

Regarding overweight and obesity, lowering the proportion of fat in the diet resulted in a small decrease of body weight. Therefore, these new epidemiological trial data suggest that there is insufficient evidence to recommend limited consumption of the various types of fats and oils to improve health outcomes.

Keywords: Dietary fats and oils; Cardiovascular disease; Diabetes type 2; Cancer risk; Public health recommendations

Abbreviations: CHD: Coronary Heart Disease; CVD: Cardiovascular Disease; EPA: Eisosapentaenoic Acid; DHA: Docosahexaenoic Acid; DM: diabetes mellitus; PC: Prospective cohorts; RCTs: Randomised Controlled Trials; RR: Relative Risk; MUFA: Monounsaturated Fatty Acids; PUFA: Polyunsaturated Fatty Acids; SFA: Saturated Fatty Acids

Volume 2 Issue 6 April 2018 © All Copy Rights are Reserved by Ulrich Keller.

Introduction

Dietary fats and oils cover approximately one third of total energy requirements and are the most energy-dense nutrients. As nutrition-related diseases such as obesity, cardiovascular diseases and diabetes type 2 are becoming more and more prevalent; the role of fats and oils in their development and prevention is of particular interest. Not only the quantity but particularly the quality of fats and their fatty acid content is of great interest, specifically in relation to atherosclerotic diseases.

Guidelines such as the AHA/American College of Cardiology Guideline on Lifestyle Management to Reduce Cardiovascular Risk (2013) [1], the WHO and the 2010 Dietary Guidelines for Americans [2] recommend to limit consumption of saturated fats to less than 10% of energy consumption.

In addition, several governmental health recommendations such as the WHO/FAO Expert Consultation stated that a maximum of 10% of energy should be consumed as n–6 PUFA for CHD risk reduction. The Swiss Federal Commission on Nutrition has issued recommendations on the consumption of fats and oils for the public in 1992, 2006 [3] and 2012 [4]. These recommendations proposed a limitation of fat intake, both of the saturated and the unsaturated varieties.

In the meantime, results of several large epidemiological studies reporting associations between fat consumption and health outcomes have been published. The present article reviews and summarizes meta-analyses of epidemiological studies published in international journals related to the subject during the last decade, with the goal to propose possible revisions of the current recommendations.

Definition and scope

Fats are present in visible form or they are contained in food products with a mixture of nutrients ("hidden fat"). Solid fats are mostly of animal origin, and oils are usually of plant origin. Dietary fats and oils contain fatty acids of various chain lengths and degrees of saturation which exert different effects on the risk of non-communicable diseases. Since most fats and oils contain mixtures of fatty acids, and certain fatty acids are often present in both animal and plant-based sources, they are discussed as a whole group. The main focus of this review is to summarize associations between consumption of certain fats and oils (defined by their fatty acid composition) and health outcomes according to epidemiological studies. Specific foodstuff with mixtures of nutrients including fat (e.g. dairy, processed meat) is not discussed.

Research of the literature and grading of evidence

The literature search focused on meta-analyses quoted in PubMed during the past 5 years (2012-2017). Key words used were dietary fats, fatty acids, oils, and health outcomes, cardiovascular disease, coronary heart disease, obesity, diabetes type 2, mortality, blood lipids, cancer, depression, cognitive impairment. A total of 122 meta-analyses were retrieved. Only original publications dealing with adults, healthy individuals were considered; studies with focus on biomarkers were excluded. Tables of individual meta-analyses of cohort studies and randomized controlled studies including their main features and conclusions was prepared.

Classification of levels of evidence (LOE, according to WHO [5] was the following: LOE I: Ia Meta-analyses of randomised controlled intervention studies;

bob i. in field analyses of fundomised controlled intervention

Ib randomised controlled intervention studies

LOE II: IIa Meta-analyses of cohort studies;

IIb cohort studies

A few selected epidemiological studies which appeared to be of importance in relation to the subject of this publication were quoted.

Mechanisms

Dietary fats are more energy-dense than other energy providing foods. The different fatty acids in fats and oils determine their physical (melting point or fluidity of cell membranes) and chemical (e.g. process of chemical reactions) behaviour and their biological

functions. They exert different effects on plasma lipoprotein concentrations and are precursors of eicosanoids as metabolites of n-3 and n-6 fatty acids. Dietary fats are also sources of fat-soluble vitamins and of flavouring agents. Vegetable oils such as extra virgin olive oil contain also phenolic compounds which may exert anti-inflammatory properties [6].

Survey of publications

Basic considerations

There has been a tendency during the past years in international nutritional recommendations [7,8] to recommend consumption of certain foods or food groups rather than quantities of specific nutrients such as fats or carbohydrates. Reason for this is that health effects of certain nutrients depend on the type of food in which they are consumed, due to the texture of the food and to other food components [9-11]. Examples: Identical quantities of SFA in the form of butter or cheese may have slightly different effects on serum lipids [12]. In addition, fermented dairy products have different health effects compared to unfermented products [13] even with identical content of macronutrients.

Nevertheless, the present survey focusses on fats and oils as they are defined by their biochemical composition. The reason for this is the fact that the currently available epidemiological literature was largely based on this aspect.

Summary of a publication of meta-analyses of the relationship between dietary fats and oils and coronary heart disease, stroke, and diabetes mellitus published between 2006 and 2014 [14]

			Relative Risk	k (95% CI)	
	0.4	0.6	0.8 1	1.2	1.4	1.6
c	HD			-		7 PCs
Total fat Stro	oke		-	-		4 RCTs
Diabe	tes			8		4 PCs
c	HD			••		20 PCs
Saturated fat Stro	ke	-	-	•		8 PCs
Diabe	tes		-	-		7 PCs
	HD		+			9 PCs
Monounsaturated Stro	oke					11 PCs
Diabe	tes			-		6 PCs
Total PUFA or c	HD					9 PCs
n-6 PUFA Diabe	tes			•		5 PCs
- 2 DUCA	HD			•		5 PCs
(Plant sources) Stro	ke					3 PCs
Diabe	tes					7 PCs
c	HD		++			16 PCs
n-3 PUFA Fatal G	HD		-			16 PCs, 5 RCTs
(Seafood sources) Street	ke					8 PCs
Diabe	tes		-			16 PCs
Trans fat c	HD			+		+ 4 PCs
(industrial) c	HD				-	4 PCs

Figure 1: shows the relative risks with 95% confidence intervals for major health outcomes during high versus low consumption of specific fats (redrawn from Figure 7 in [14].

Citation: Ulrich Keller. "Health Aspects of Nutritional Fats and Oils. A Review of Recent Findings". *Nutrition and Food Toxicology* 2.6 (2018): 488-516.

Conclusions from this review of meta-analyses: Total fat and saturated fat is not clearly associated with CHD, stroke and diabetes, Monounsaturated fats appear to be protective for stroke. Total or n-6 PUFA are associated with diminished CHD events. Plant-based n-3 PUFA are shown to be protective for diabetes type 2, however, inspection of reference Wu J., *et al.* (2012) [15] shows that the decrease of diabetes risk was not statistically significant. Seafood-derived n-3 PUFA are associated with diminished CHD risk, and they diminish CHD death. The most striking association is the association of industrial trans fats with CHD risk.

Sour	e Study cat- egory	Dis- ease	End point	Main nutri- tional theme	No. of in- cluded studies	No. of subjects	Subject group	Dura- tion	RR (95%CI)	Limita- tions	Conclu- sions	LOE
Har- comb Z, 20 [20]	Meta- analysis 7 of PCs	CHD	Mortal- ity	Total fat and SFA intake	6 PCs	89'801	Adults without CHD	6-20 yrs.	The RR 1.04 (0.98- 1.1) for total fat, and 1.08 (0.94- 1.25) for SFA	Lack of gen- eralis- ability, dietary recalls are unreli- able	Epidemi- ological evidence to date found no signifi- cant as- sociation between CHD mortality and total fat or saturated fat intake	II a
Micha R 201 (PLoS [21]	 Meta- analysis and sys- tematic review of meta- analy- ses of PCs & RCTs 	CVD & diabe- tes	Disease risk	10 foods & 7 nu- trients (includ- ing PUFA & trans)	23 meta- analy- ses	140'000- 820'000	Adults	Not stated	Refers to individual meta- analyses	Pos- sible bias by cluster- ing of dietary pat- terns which could still cause unmea- sured con- found- ing, e.g., from cluster- ing of health- ful fac- tors.	There was evi- dence for protective cardio- metabolic effects of seafood omega-3s, polyun- saturated fats, and adverse effects of trans-fats. Optimal mean popula- tion intake of PUFA replac- ing SAFA or CHO: 11% E [of 2000 kcal]	I a & II a

	D.	CUD	34 1 1	10	Ι.	Ι.	A 1 1/			D: 1	N	1 0
Micha R 2017 (JAMA) [22]	Data from NHANES & meta- analyses of PCs & RCTs	CVD & dia- betes	Mortal- ity	10 dietary factors (includ- ing PUFA & seafood ome- ga-3 fats)	not stated	not stated	Adults	years	CHD: POFAs,% energy replac- ing carbo- hydrates or saturated fats per 5% energy/d (age 50): RR 0.88 (0.83-0.94); Seafood omega 3 per 100 mg/d: RR0.82 (0.075- 0.90)	Dietary habits were based on self-re- ported 24-hour recalls, which have known mea- sure- ment errors for indi- vidual people	Most cardio- metabolic deaths in USA were estimated to be related to excess sodium intake, in- sufficient intake of nuts/ seeds, high intake of processed meats, and low intake of seafood omega-3 fats	Ia & II a
Alex- ander D. et al. 2017 [23]	Meta- analysis of PCs & RCTs	CHD	Risk & mortal- ity	EPA &DHA from foods or supple- ments	18 RCTs & 16 PCs	93,000 (RCT trials) & 732,000 in PC studies	Adults with and without CHD	5-40 yrs.	Among RCTs, risk reduction (CHD) with EPA&DHA (SRRE=0.94; 95% CI, 0.85- 1.05) was n.s. Subgroup analy- ses indicated a significant CHD risk reduction with EPA&DHA in higher-risk populations (e.g. with el- evated TG levels (SRRE=0.84; 95% CI, 0.72- 0.98) and elevated LDL-c (SRRE=0.86; 95% CI, 0.76- 0.98). Meta- analysis of PCs resulted in a significant SRRE of 0.82 (95% CI, 0.74-0.92) for higher intakes of EPA&DHA	Large hetero- geneity of stud- ies	EPA&DHA may be associ- ated with reducing CHD risk, with a greater benefit observed among higher- risk popu- lations in RCTs	I a & II a

Pimpin 2016 [24]	Meta- analysis of PCs	CVD, Mor- tality	Risk & Mortal- ity	Butter	15 PCs	636'151	Adults	10- 22 yrs.	Butter con- sumption (14 g/d) was weakly associated with mortal- ity; RR = 1.01, 95%CI = 1.00, 1.03, P =0.045) but not with any CVD(RR = 1.00,95%CI = 0.98, 1.02; P = 0.704), CHD (RR = 0.99, 95%CI = 0.96,1.03; P = 0.537), or stroke (N = 3; RR = 1.01, 95%CI = 0.98, 1.03; P = 0.737)	No evi- dence for hetero- geneity nor publi- cation bias	There were relatively small or neutral overall as- sociations of butter with mortality & CVD	II a
de Souza RJ, 2015 [25]	Meta- analysis of PCs	CVD, stroke, diabe- tes	Risk & mortal- ity	SFA & trans fats (indus- trial & rumi- nant)	12 PCs	90'500- 339'000	Adults	Not stat- ed	RR SFA 0.99 (0.91-1.09) for total mortality, 0.95 (0.88-1.03) for CVD mortal- ity, 1.02 (0.9- 1.15) for stroke, 0.95 (0.88- 1.03) for DM. Industrial, but not ruminant, trans fats were associated with CHD mortality (1.18 (1.04 to 1.33) v 1.01 (0.71 to 1.43)) and CHD (1.42 (1.05 to 1.92) v 0.93 (0.73 to 1.18))	Evi- dence is het- eroge- neous; meth- od- ological limita- tions	SFA are not associ- ated with all-cause mortality, CVD, CHD, ischemic stroke, or type 2 diabetes, but the evidence is hetero- geneous with metho- dological limita- tions. Trans fats are associ- ated with all-cause mortality, total CHD, and CHD mortality, probably because of higher levels of intake of indus- trial than ruminant trans fat	II a

Hooper L. 2015 (Co- chrane) [26]	Meta- analysis of RCTs	CVD	Mor- bidity, mortal- ity	Replac- ing SFA with CHO, PUFA or other nutri- ents	15 RCTs	59'000	Adults	>2 yrs.	Reducing di- etary saturated fat reduced the risk of cardio- vascular events by 17% (risk ratio (RR) 0.83; 95% confidence interval (CI) 0.72 to 0.96, mainly when saturated fat calories re- placed polyun- saturated fat	The studies provide mode- rate- quality evi-dence that redu- cing SFA and replac- ing it with PUFA reduces our risk of CVD	A small but po- tentially important reduction in cardio- vascular risk on reduction of satu- rated fat intake is observed when replacing SFA with PUFA	Ia
Farvid M.S. 2014 [27]	Meta- analysis of PCs	CHD	Risk & death	Dietary linoleic acid	13 PCs	310'602	Adults	5.3- 30 yrs.	Highest vs lowest category of LA intake resulted in a 15% lower risk of CHD events (pooled RR, 0.85; 95% CI 0.78–0.92; I2=35.5%), and a 21% lower risk of CHD deaths (pooled RR, 0.79; 95% CI 0.71–0.89; I2=0.0%). A 5% of energy increment in LA intake replac- ing SFA was associated with a 9% lower risk of CHD events (RR, 0.91; 95% CI, 0.87–0.96) and a 13% lower risk of CHD deaths (RR, 0.87; 95% CI, 0.82–0.94)	No evi- dence of pub- lication bias for either CHD events or death.	In pro- spective obser- vational studies, dietary LA intake is inversely associ- ated with CHD risk in a dose- response manner. These data pro- vide sup- port for current recom- menda- tions to replace saturated fat with polyun- saturated fat for primary preven- tion of CHD	II a

r			1	1						1				
	Wen YT, 2014 [28]	Meta- analysis of RCTs	CV events & mor- tality	CV events & mor- tality	Omega 3 PUFA supple- ments	14 RCTs	16'338	Patients with CHD	3 mo 4.6 yrs.	Omega-3 PUFAs did not demon- strate satisfactory improvements of major cardiovas- cular events (OR, 0.93; 95% CI, 0.86 to 1.01; P Z 0.08; I2 Z 46%). By contrast, omega3 PUFAs reduced risks of death from cardiac causes and death from all causes (OR, 0.88; 95% CI, 0.80 to 0.96; P= 0.003; OR, 0.86; 95% CI, 0.76 to 0.98; P= 0.03; and OR, 0.92; 95% CI, 0.85 to 0.99; P= 0.02)	No ev dence of pub licatic bias fo either CHD event: or death	i- Supp of On p- PUFA on paties or CHD of cardies event reduce from cause death all ca Whet etary ment with PUFA be sti sider paties CHD i renty	lement hega-3 s in nts with does not ont major ovascular s, but res death cardiac s and from uses. her di- supple- ation Omega-3 s should ll con- ed in nts with is cur- r debated	Ia
	Schwings hackl L, 2014 [BM open] [29	- Meta- analys IJ of RCT	CHD is 's	Risk & death	Fat re- duction; replac- ing SFA with PUFA or other nutri- ents	12 RC	Fs 7'150	Patients with CHD	1-6 yrs.	When comparing modified fat diets versus control die significant risk re- tion could be obse considering all-ca mortality (RR 0.92 p=0.60; I2=59%) cardiovascular mo ity (RR 0.96, p=0.4 I2=69%), combin- cardiovascular ev (RR 0.85, p=0.30; I2=75%) and myc cardial infarction 0.76, p=0.13; I2=5 Sensitivity analyse not reveal a signif risk reduction for outcome paramet when polyunsatur fat was increased exchange for satur fat	ts no duc- erved use 2, and ortal- 34; ed ents ,- (RR (5%). es did icant any er rated in rated	Some studies were >50 yrs. old. Sub- stantial hetero- gene- ity for several out- comes	Recom- mend- ing higher intakes of PUFA in replace- ment of SFA was not associ- ated with risk reduc- tion in patients with CHD	Ia

				1	1	1	1		1	[1	
Chowd- hury R, 2014 [30]	Sys- tematic review & meta- analysis of obser- vational studies & of RCTs	CHD	Risk	Dietary & circu- lating fatty acids	32 obser- vational studies, 27 RCTs	up to 512'000	Adults, with and without CHD	5-23 yrs. in PCs, 1-8 yrs. in RCTs	In observational studies, relative risks for CHD were 1.03 (95% CI, 0.98 to 1.07) for SFA, 1.00 (CI, 0.91 to 1.10) for MUFA, 0.87 (CI, 0.78 to 0.97) for LC n-3 PUFA, 0.98 (CI, 0.90 to 1.06) for n-6 PUFA, and 1.16 (CI, 1.06 to 1.27) for trans fat- ty acids when the top and bottom thirds of baseline dietary fatty acid intake were com- pared. In RCTs, relative risks for CHD were 0.97 (CI, 0.69 to 1.36) for ALA, 0.94 (CI, 0.86 to 1.03) for LC n-3 PUFA, and 0.86 (CI, 0.69 to 1.07) for n-6 PUFA supplementations	Po- tential biases from prefer- ential publica- tion and selec- tive report- ing	Current evidence from RCTs does not clearly support cardio- vascular guide- lines that encour- age high con- sump- tion of polyun- saturat- ed fatty acids and low con- sump- tion of total saturat- ed fats	I a & II a
de Goede J, 2013 [31]	Meta- Analy- sis of 2 cohort studies	CHD	Mor- tal- ity	Asso- ciations with plasma fatty acid choles- teryl esters	2 observational cohorts	558	Dutch adults	8-19 yrs.	After adjustment for confounders, the OR (95%CI) for fatal CHD per SD increase in plasma linoleic acid was 0.89 (0.74–1.06). The ORs (95%CI) for fatal CHD for an SD increase in n-3 PUFA were 0.92 (0.74–1.15) for alpha-linolenic acid and 1.06 (0.88–1.27) for EPA-DHA. In the meta-analysis, a 5% higher linoleic acid level was associated with a 9% lower risk (relative risk: 0.91; 95% CI: 0.84–0.98) of CHD	Blood samples were stored >10 yrs. Data of plasma n-3 FA esters were possibly unreli- able	Linoleic acid in plasma choles- teryl is inversely associat- ed with CHD. There was no such relation with n-3 PUFA choles- teryl esters	II a

Rams- den CE, 2013 [32]	RCT (Sydney Diet Heart Study) & meta- Anal- ysis of RCTs	CHD	Mortal- ity	Dietary linoleic acid (LA)	1 (+2+4) RCTs	458	Men with recent CHD	12 mo.	Replace- ment of dietary SFA with omega 6 LA (inter- vention) had higher rates of death than controls (all cause 17.6% v 11.8%, HR 1.62 (95% CI 1.00 to 2.64), P=0.05; CVD 17.2% v 11.0%, 1.70 (1.03 to 2.80), P=0.04; CHD 6.3% v 10.1%, 1.74 (1.04 to 2.92), P=0.04)	Results of bor- derline signifi- cance. Small trial	☑-Linoleic acid interven- tion trials showed no evi- dence of cardio- vascular benefit	Ia
Pan A, 2012 [33]	Meta- analysis of cohorts	CVD	Risk	Dietary 2-linolenic acid (ALA)	27 cohorts (pro-& retro- spec- tive)	251'049	Adults	5- 33.7 yrs.	The overall pooled RR was 0.86 (95% CI: 0.77, 0.97; I2 = 71.3%). The asso- ciation was n.s. with biomarkers of ALA	High unex- plained hetero- geneity	Higher ALA exposure is associ- ated with a mod- erately lower risk of CVD. The re- sults were generally consis- tent for dietary studies but were not sta- tistically significant for bio- marker studies	II a

Kotwal S, 2012 [34]	Meta- analysis of RCTs	CVD	Risk & death	Omega 3 PUFA supple- ments (fish oil) or inter- vention	20 RCTs	> 60'000	Mostly pa- tients with CHD	0.6-7 yrs.	There was no overall effect of ω -3 FA on com- posite cardio- vascular events (RR=0.96; 95% CI, 0.90–1.03; P=0.24) or on total mortality (RR=0.95; 95% CI, 0.86–1.04; P=0.28). ω -3 FA did protect against vascular death (RR=0.86; 95% CI, 0.75– 0.99; P=0.03) but not coronary events (RR=0.86; 95% CI, 0.67– 1.11; P=0.24)	Sig- nificant hetero- geneity between the tri- als	Omega 3 fatty acids did not pro- tect against composite cardiovas- cular events but showed some protection against CV death. There is no clear effect on total mortal- ity, sud- den death, stroke, or arrhythmia. The benefi- cial effects of omega 3 fatty acids are not as large as previously implied	Ia
Hooper L. 2012 (Co- chrane) [35]	Meta- analysis of RCTs	CVD	Risk & death	Fat intake, replace- ment of fat with other macronu- trients	48 RCTs	> 80'000	Adults, with and with- out CHD	> 6 mo.	Reducing SFA by reducing and/or modify- ing dietary fat reduced the risk of CV events by 14% (RR 0.86, 95%CI 0.77 to 0.96, 24 com- parisons, 65'508 participants of whom 7% had a cardiovascular event).Sub- grouping sug- gested that this reduction was observed only in studies of at least two years duration and in men (not of women). Dietary fat reduction/ modification had no effect on total and on CV mortality	Uncer- tainty over al- location conceal- ment, lack of blind- ing and pres- ence of system- atic dif- ferenc- es- but scale and con- sistency of evi- dence makes findings rela- tively robust	Modify- ing fat in our food (replacing some SFA with plant oils and unsaturated spreads) may reduce risk of heart and vascular disease, but it is not clear whether MUFA or PUFA are more benefi- cial. There were no clear effects of dietary fat changes on total and cardiovascu- lar mortality	Ia

Schwings- hackl L, 2014 [Lip- ids Health Dis] [36]	Meta- analysis of PCs	CVD & stroke	CV events & mor- tality, stroke risk	Mono- unsatu- rated fatty acids, olive oil	32 PCs	841'211	Adults, most of them with- out CVD at base- line	4.6- 30 yrs.	The comparison of the top versus bottom third of the distribution of a combination of MUFA (of both plant and animal origin) showed reduced all- cause mortality (RR: $0.89, 95\%$ CI $0.83, 0.96, p =$ 0.001; I2 = 64%), CV mortality (RR: $0.88, 95\%$ CI $0.80, 0.96, p$ = 0.004; I2 = 50%), CV events (RR: $0.91, 95\%$ CI $0.86, 0.96, p$ = 0.001; I2 = 58%), and stroke (RR: $0.83,95\%$ CI $0.71, 0.97, p =$ 0.02).	Po- tential public- cation bias for com- bined CV events (p = 0.018) & total mortal- ity (p = 0.041). No evi- dence of publi- cation bias for risk of CHD (p = 0.28) and stroke (p = 0.28)	There was an over- all risk reduction of stroke (17%) when compar- ing the top versus bottom third of MUFA, olive oil, oleic acid, and MUFA: SFA ratio. Only olive oil seems to be associ- ated with reduced risk	II a
Cheng P, 2016 [37]	Meta- analysis of cohorts	Stroke	Risk & death	SFA	15 PCs	476'569	Adults	7.6- 18 yrs.	Higher SFA intake was as- sociated with reduced stroke risks for East- Asians [RR = 0.79 (95 % CI 0.69-0.90)], for dose <25 g/day [RR = 0.81 (95 % CI $0.71-0.92$)], for males [RR = 0.85 (95 % CI 0.75-0.96)], and for individuals with body mass index (BMI) <24 [RR = 0.75 (95 % CI $0.65-0.87$)], but not for non- East- Asians, females, and individuals with dose >25 g/day and BMI >24	Possible thresh- old effect of SFA con- sump- tion	Higher consump- tion of SFA was associ- ated with decreased stroke risk (morbidity, mortality) in certain groups of subjects (not in Non-East- Asians)	II a

Che P 2 [38	eng 015 3]	Meta- analysis of cohorts	Stroke	Risk & death	Long- chain n-3 PUFA	14 PCs	514'483	Adults	4-21.2 yrs.	Higher long chain n-3 PUFA intake was associated with re- duced overall stroke risk [relative risk (RR) = 0.87; 95% confidence interval (CI), 0.79–0.95	Signif- icant het- eroge- neity be- tween the trials	Higher long chain n-3 PUFA intake is inversely associated with risk of stroke mor- bidity and mortality	II a
Ma tíne Goi MA [39	r- ez- nzález 2014)]	Meta- analysis of cohorts; 1 RCT	Stroke	Risk	Olive Oil con- sump- tion	2 PCs, 1 RCT	Ca. 40'000	Adults	years	The combined RR of stroke for an incre- ment of 25 g olive oil consumed per d was 0.76 (95% CI 0.67, 0.86; P,0.001), with a negligible change after including the PREDIMED trial	Rela- tively few trials	Higher olive oil intake is inversely associated with risk of stroke incidence	I a & II b
Lar SC [40	rssen 2012)]	Meta- analysis of PCs	Stroke	Risk	Long- chain n-3 PUFA	8 PCs	242'076	Adults	4-28 yrs.	The combined RR of total stroke was 0.90 (95 % CI, 0.81–1.01) for the highest versus lowest category of long-chain omega-3 PUFA intake, without heterogeneity among studies (P = 0.32)		No as- sociation between stroke risk & n-3 PUFA intake	II a
Chd dhu R, 2 [41	 ow- ury 2012 []	Meta- analysis of PC & RCTs	Stroke (cere- bro- vas- cular dis- ease)	Risk & mor- tality	Long- chain n-3 PUFA	26 PC2 & 12 RCTs	794'000	Adult with & out CVD	3- 15.1 yrs.	The RR for cerebro- vascular disease comparing the top thirds of baseline LC omega 3 fatty acids with the bottom thirds for circulating biomarkers was 1.04 (0.90 to 1.20) and for dietary exposures was 0.90 (0.80 to 1.01). In the RCTs the RR for cerebrovas- cular disease in the LC omega 3 supple- ment compared with the control group in primary preven- tion trials was 0.98 (0.89 to 1.08) and in secondary preven- tion trials 1.17 (0.99 to 1.38)		There were moderate, inverse associa- tions of fish consump- tion and LC omega 3 fatty acids with cerebrovas- cular risk. LC omega 3 fatty acids in RCTs with supplements had no significant effect	I a & II a

500

Table 1: Dietary fat or fatty acid intake in relation to cardiovascular disease(CVD) and stroke. List of meta-analyses published between 2012 and 2017.

These studies demonstrate that consumption of total fat and saturated fat (in % of energy intake) is not clearly associated with cardiovascular morbidity and mortality.

A small but potentially important benefit regarding cardiovascular risk results from reduction of saturated fat when it is replaced by polyunsaturated fat. This benefit has not been observed in patients with established CVD. Consumption of the PUFA linoleic acid has been associated with diminished cardiovascular morbidity and mortality; however, there is insufficient evidence to prioritize a specific type of unsaturated fat replacing saturated fats. Seafood-derived PUFA (n-3) supplements have been shown to diminish cardiovascular and total mortality in cardiovascular high risk patients. Consumption of industrial trans fatty acids has been associated with increased cardiovascular morbidity and mortality and total mortality. Regarding stroke risk, higher consumption of MUFA (particularly olive oil) has been associated with diminished risk. There is evidence from cohort studies that consumption of long-chain n-3 PUFAs is associated with diminished stroke risk, however, RCTs with long-chain n-3 PUFAs are inconclusive.

Source	Study cat- egory	Disease	End point	Main nu- tritional theme	No. of in- cluded stud- ies	No. of sub- jects	Subject group	Dura- tion	RR (95%CI)	Limita- tions	Conclu- sions	LOE
Jova- novski E 2017 [42]	Sys- tematic review & meta- analysis of RCTs	Diabe- tes T2	Gly- cemic con- trol, insulin sensi- tivity	□-linolenic acid	8 RCTs	212	Adults with DM T2	3 months	n.s. for: HbA1c, IR (HOMA), FBG	Consider- able un- explained heteroge- neity	□-linolenic acid- enriched diets did not affect HbA1c, FBG, or FBI.	Ia
Wu J.H.Y 2017 [43]	Sys- tematic review & meta- analysis of PCs	Diabe- tes T2	New dia- betes risk	Omega-6 fatty acid biomark- ers	20 PCs	39'740	Adults	mean 8 yrs.	Higher pro- portions of linoleic acid biomark- ers as % of total fatty acid were associ- ated with a lower risk of type 2 diabetes [RR per in- terquintile range 0.65, 95% CI 0.60-0.72, p < 0.0001). Levels of arachidonic acid were n.s.	Linoleic acid bio- markers reflect dietary intake but are not identical to dietary intake	Linoleic acid has long-term benefits for the prevention of type 2 DM and that ara- chidonic acid is not harmful	II a

Schwing- shackl L 2017 [44]	Sys- tematic review & meta- analysis of PCs	Diabe- tes T2	Diabe- tes T2 risk & gly- cemic con- trol	Olive oil	4 PCs, 29 RCTs	15'784 DM T2	Adults with and without DM T2	5- 22 yrs. for PCs, 2 wks 4 yrs. for RCTs	The highest olive oil intake category showed a 16% reduced risk of T2D (RR: 0.84; 95% CI: 0.77, 0.92) compared with the low- est. In T2D pa- tients olive oil supplementa- tion resulted in a signifi- cantly more pronounced reduction in HbA1c (MD: - 0.27%; 95% CI: $-$ 0.37, - 0.17) and fasting plasma glucose (MD: - 0.44 mmol/; 95% CI $-$ 0.66, $-$ 0.22) as compared with the con- trol groups	There was evidence for a nonlinear relation- ship	Olive oil could be beneficial for the prevention and man- agement of T2D	II a
Lin N 2016 [45]	Sys- tematic review & meta- analysis of RCTs	Diabe- tes T2	CRP, other mark- ers of in- flam- ma- tion	n-3 PUFA, most- ly fish oil	8 RCTs	955	Adults with DM T2	6-12 weeks	N-3 PUFAs significantly reduced CRP concentration compared with control [SMD 95 % CI, 1.90 (0.64, 3.16), Z = 2.96, P = 0.003, random effect model	Small tri- als, short duration	N-3 PUFAs decrease CRP con- centration in type-2 DM mel- litus	Ia
Pimpin 2016 [24]	Meta- analysis of PCs	Diabe- tes	Risk	Butter	11 PCs	23'954 inci- dent DM	Adults	10-22 yrs.	Butter con- sumption (14 g/d) was inversely as- sociated with incidence of diabetes (N = 11; RR = 0.96, 95%CI = 0.93, 0.99;P = 0.021)	No evi- dence for heteroge- neity nor publica- tion bias	There was a relatively small as- sociation of butter with di- minished risk of DM	II a

Qian F 2016 [46]	Sys- tematic review & meta- analysis of RCTs	Diabe- tes T2 (T2D)	Gly- cemic control, blood pres- sure lipids	MUFA com- pared to CHO & PUFA	24 RCTs com- paring with CHO, 4 RCTs with PUFA	1'504	Adults with DM T2	2- 48 weeks	High-MUFA com- pared to high-CHO diets reduced fasting plasma glucose (WMD -0.57mmol/L [95%CI -0.76,- 0.39]), triglycer- ides (-0.31 mmol/L [-0.44, -0.18]), body weight (-1.56 kg [-2.89,-0.23]), and systolic blood pressure (-2.31 mm Hg), &-increased HDL cholesterol (0.06 mmol/L [0.02, 0.10]). High-MUFA diets compared with high-PUFA diets reduced fast- ing plasma glucose (-0.87 mmol/L [-1.67, -0.07])	Low to medium levels of heteroge- neity	Evidence that con- suming di- ets high in MUFA can improve meta- bolic risk factors among patients with T2D	Ia
Imam- ura F 2016 [47]	Sys- tematic review & meta- analysis of RCTs	Diabe- tes T2, meta- bolic syn- drome	Glu- cose- insulin homeo- stasis (HOMA model)	SFA, PUFA, MUFA, and car- bohy- drate	102 RCTs	4'220	Adults with and without DM T2	3- 168 days	Replacing 5% energy from carbo- hydrate with SFA had no significant effect on fasting glucose; replacing carbohydrate with MUFA lowered HbA1c (-0.09%; -0.12, -0.05; n = 23), 2 h post- challenge insulin (-20.3 pmol/L; -32.2, -8.4; n = 11), and HOMA-IR (-2.4%; -4.6, -0.3; n = 30). Replacing carbohydrate with PUFA significantly lowered HbA1c (-0.11%; -0.17, -0.05) and fast- ing insulin (-1.6 pmol/L; -2.8, -0.4). Replacing SFA with PUFA significantly lowered glucose, HbA1c, C-peptide, and HOMA	Small number of trials for some out- comes and potential issues of blinding, compli- ance, generalis- ability, hetero- geneity due to unmea- sured fac- tors, and public- cation bias	In com- parison to carbohy- drate, SFA, or MUFA, most consistent favourable effects were seen with PUFA, which were linked to improved glycaemia, dimin- ished insulin resistance, and improved insulin secretion capacity	Ia

Abbott KA 2016 [48]	Sys- tematic review & meta- analysis of RCTs	Diabe- tes T2, meta- bolic syn- drome	Insulin resis- tance (IR), in men and women	n-3 PUFA, most- ly fish oil	26 RCTs	1'848	Adults with and with- out DM T2	1-6 months	With all studies pooled, there was no effect of $n-3$ PUFA on IR at the group level (SMD: 0.089; 95% CI: 20.105, 0.283; P = 0.367). In trials of >6 wks., a signifi- cant improvement in IR was seen in women (SMD: 20.266; 95% CI: 20.524, 20.007; P	There was sig- nificant hetero- geneity between groups and a limited number of trials in men and women	Improve- ment of insulin resistance with LC- n-3-PUFA in women but not in men	Ia
									=0.045) but not in men (SMD: 0.619; 95% CI: 20.583, 1.820; P = 0.313	rately		
Chen C 2015 [49]	Meta- analysis of RCTs	Diabe- tes T2	Glucose control, lipids, BMI	n-3 PUFA, most- ly fish oil	20 RCTs	1'209	Adults with DM T2	mostly <12 weeks	Triglyceride (TG) levels were signifi- cantly decreased by 0.24 mmol/L by n-3 PUFAs. No significant change of total cholesterol (TC), HbA1c, fast- ing plasma glucose, postprandial plas- ma glucose, BMI or body weight was observed. High ratio of EPA/DHA contributed to a greater decreasing tendency in plasma insulin, HbAc1, TC, TG, and BMI mea- sures, although no statistical signifi- cance was identi- fied (except TG).	Relatively small studies	Sugges- tion that a high EPA/ DHA ratio affects glucose control favourably	Ia
Souza RJ 2015 [25]	Sys- tematic review & meta- analysis of PCs & RCTs	Diabe- tes T2	Diabe- tes T2 risk	SFA & trans fats (in- dus- trial & rumi- nant)	12 PCs	90000- 339000	Adults	1-32 yrs.	SFA intake was not associated with type 2 diabetes (0.95, 0.88 to 1.03). Ruminant trans- palmitoleic acid was inversely as- sociated with type 2 diabetes (0.58, 0.46 to 0.74)	The evi- dence is hetero- geneous with method- logical limita- tions	SFA are not asso- ciated with risk of type 2 DM; ruminant trans fats appear to be associ- ated with protection	I a & II a

Aronis KN 2012 [50]	Meta- analysis of RCTs	Diabe- tes T2	Glu- cose, insulin & lipids	Trans fats (TFA)	7 RCTs	208	Adults, non- diabet- ic	4-16 wks.	Increased TFA intake did not result in significant changes in glucose or insulin concen- trations. Increased TFA intake led to a significant increase in total and LDL- cholesterol [ES (95% CI): 0.28 (0.04, 0.51) and 0.36 (0.13, 0.60), respectively] and a significant decrease in HDL- cholesterol concen- trations [ES (95% CI): 20.25 (20.48, 20.01)	No pub- lication bias	TFA affect LDL-C & HDL-C but not glucose- insulin homeosta- sis	Ia
Zheng J-S, 2012 [51]	Sys- tematic review & meta- analysis of PCs	Diabe- tes T2	Relative Risk of diabe- tes T2	n-3 PUFA, most- ly fish oil, and fish	24 PCs	> 500'000	Adults	4-18 yrs.	The RR of T2D for the highest vs lowest categories of total fish, marine n-3 PUFA and alpha-linolenic acid intake was 1.07 (95% CI: 0.91, 1.25), 1.07 (95% CI: 0.95, 1.20) and 0.93 (95% CI: 0.81, 1.07), respec- tively. For Asian populations the RR (highest vs lowest category) of T2D for fish and marine n-3 PUFA intake was 0.89 (95% CI: 0.81, 0.98) and 0.87 (95% CI: 0.79, 0.96) ; for Western populations the RR was 1.20 (95% CI: 1.01, 1.44) and 1.16 (95% CI: 1.04, 1.28)	Classifi- cations of fish and n-3 PUFA intake amounts were incon- sistent;; obser- vational studies could not avoid residual con- founders	Marine n-3 PUFA have beneficial effects on the prevention of T2DM in Asian popula- tions	II a

Zhou Y, 2012 [52]	Sys- tematic review & meta- analysis of PCs	Diabe- tes T2	Relative Risk of diabe- tes T2	n-3 PUFA, most- ly fish oil, and fish	13 PCs (most- ly West- ern)	> 100'000	Adults	6- 15 yrs.	Comparing the high- est v. lowest catego- ries, the pooled RR of T2DM for intake of fish and n-3 fatty acid was 1·146 (95% CI 0·975, 1·346) and 1·076 (95% CI 0·955, 1·213), respectively. In the linear dose-re- sponse relationship, the pooled RR for an increment of one time (about 105 g)/ week of fish intake (four times/month) and of 0·1 g/d of n-3 fatty acid intake was 1·042 (95% CI 1·026, 1·058) and 1·057 (95% CI 1·042, 1·073), respectively	Potential biases and con- founders could not be ruled out com- pletely	Both fish oil and other n-3 fatty acids might be weakly positively associated with the T2DM risk (mostly Western popula- tions)	II a
Wu J.H.Y 2012 [15]	Sys- tematic review & meta- analysis of PCs	Diabe- tes T2	Diabe- tes T2 inci- dence	n-3 PUFA, ALA & most- ly fish oil	18 PCs	540'184	Adults	4-17 yrs.	Consumption of fish and/or seafood was not significantly associated with DM (n=13 studies; RR per 100 g/d = 1·12, 95% CI = 0·94, 1·34); nor were consumption of EPA &DHA (n= 16 cohorts; RR per 250 mg/d= 1·04, 95% CI= 0·97, 1·10) nor cir- culating levels of EPA &DHA biomarkers (n=5 cohorts; RR per 3% of total fatty acids = 0·94, 95% CI= 0·75, 1·17). Both dietary ALA (n=7 studies; RR per 0·5 g/d = 0·93, 95% CI = 0·83, 1·04) and circulating ALA biomarker levels (n=6 studies; RR per 0·1% of total fatty acid = 0·90, 95% CI = 0·80, 1·00, P=0·06) were associated with non-significant trend towards lower risk of DM	No pub- lication bias, but sub- stantial hetero- geneity between fish oil studies	The find- ings do not support ei- ther major harms or benefits of fish/ seafood or EPA&DHA on devel- opment of DM. ALA consump- tion showed a n.s. trend towards dimin- ished risk.	II a

											-	
Wal- lin A 2012 [53]	Sys- tematic review & meta- analysis of PCs	Diabe- tes T2	Diabe- tes T2 inci- dence	n-3 PUFA, most- ly fish oil, and fish	16 PCs	527'441	Adults	6- 19 yrs.	For each serving per week incre- ment in fish con- sumption, the RRs (95% CIs) of type 2 diabetes were 1.05 (1.02–1.09), 1.03 (0.96–1.11), and 0.98 (0.97– 1.00) combining U.S., European, and Asian/Aus- tralian studies, respectively	Hetero- geneous results due to geo- graphical differ- ences	There were differen- ces of risk of DM between geographi- cal regions with observed associati- ons of fish consum- ption and dietary intake of LC n-3 FA.	II a
Al- hazmi A 2012 [54]	Sys- tematic review & meta- analysis of PCs	Diabe- tes T2	Relative Risk of diabe- tes T2	Mac- ronu- trient intake	22 PCs	> 500'000	Adults	4.6- 20 yrs.	High intake of dietary carbo- hydrate was associated with an increased type 2 diabetes risk (RR= 1.11, 95% CI: 1.01 to 1.22, p=0.035); however, this effect was not observed in an analysis stratified by gender. Intake of total fat, SFA, MUFA & PUFA was not associated with diabetes risk	No stud- ies ful- filled all require- ments for a high- quality study free of bias	Fat and individual fatty acid intake was not associ- ated with DM T2 risk	II a
Man- soor N 2016 [55]	Meta- analysis of RCTs	Obe- sity & CV risk factors	Weight loss, lipids	Low fat versus low carb	11 RCTs	1'369	Adults, over- weight- obese	6 months	Participants on LoFat diets com- pared to LoCarb diets lost more weight (WMD $-2\cdot17$ kg; 95% CI $-3\cdot36$, $-0\cdot99$) and triglycerides (WMD $-0\cdot26$ mmol/l; 95% CI $-0\cdot37$, $-0\cdot15$), but had a greater increase in HDL- cholesterol (WMD $0\cdot14$ mmol/l; 95% CI $0\cdot09$, $0\cdot19$) and LDL- cholesterol (WMD $0\cdot16$ mmol/l; 95% CI $0\cdot003$, $0\cdot33$)	Heteroge- neity was moderate to high for all variables	The beneficial changes of LoCarb diets must be weighed against the possible detrimen- tal ef- fects of increased LDL-cho- lesterol	Ia

To- bias DK 2015 [56]	Meta- analysis of RCTs	Obe- sity	Weight loss, serum triglyc- erides	Low fat versus other di- etary inter- ven- tions	53 RCTs	68128	Adults, over- weight- obese, for- merly obese	>1 yr.	In weight loss trials, low- carbohydrate interventions led to significantly greater weight loss than did low-fat interventions (18 comparisons; WMD 1.15 kg [95% CI 0.52 to 1.79	Incom- plete out- come data was a high potential source of bias for 39 trials because of drop-out and loss- to-follow- up rates exceeding 5%	Higher-fat, low-car- bohydrate dietary interven- tions led to a slight but significant, greater long-term weight loss than did low-fat interven- tions	Ia
Sack- ner- Bern- stein J, 2015 [57]	Meta- analysis of RCTs	Obe- sity	Weight loss, CV risk factors	Low fat versus low carb	17 RCTs	1'797	Adults, over- weight- obese	8 wks 2 yrs.	Compared with low fat diet, low carbohydrate was associated with significantly greater reduc- tion in weight (Δ = -2.0 kg, 95% CI: -3.1, -0.9) and significantly lower predicted risk of atherosclerotic cardiovascular disease events (p < 0.03)	No patient- level data; frequent loss of follow-up	LoCarb diet ap- pears to achieve greater weight loss and reduction in pre- dicted risk of ASCVD events compared with LoFat diet	Ia
Hooper L 2015 (Co- chrane) [58]	Meta- analysis of RCTs & of PCs	Weight gain	Change of body weight, Lipids	Total fat intake	32 RCTs, 25 PCs	54'000 (RCTs)	Adults, not aiming to lose weight	Me- dian: 5 yrs.	Eating less fat (compared with usual diet) re- sulted in a mean weight reduction of 1.5 kg (95% CI -2.0 to -1.1 kg), but greater weight loss results from greater fat reductions. The size of the effect on weight does not alter over time and is mirrored by reductions in body mass index (BMI) (-0.5 kg/m2, 95% CI -0.7 to -0.3) and waist circumfer- ence (-0.3 cm, 95% CI -0.6 to -0.02)	There was a high risk of per- formance bias due to lack of blinding; most RCTs were at unclear risk of reporting bias; some trials had high attri- tion rates	Lowering the pro- portion of fat in food leads to a small but noticeable decrease in body weight, body mass index and waist circum- ference in both, adults and children. The effect did not change over time	I a & II a

508

Table 2: Dietary fat or fatty acid intake in relation to diabetes type 2 and obesity.List of meta-analyses published between 2012 and 2017.

These findings show that consumption of total fat or saturated fat intake has not been clearly associated with diabetes type 2 risk. Increased consumption of MUFA, olive oil and in some instances of n-6 PUFA have been associated with diminished diabetes risk and with improved metabolic control in patients with established diabetes when carbohydrates were replaced by MUFA. Regarding high versus low consumption of plant-derived n-3 PUFA, some studies suggested a diminished risk of developing type 2 diabetes and decreased insulin resistance but the findings were not consistent.

Seafood-derived n-3- PUFA have not been shown to reduce diabetes type 2 risk in Western populations. Regarding overweight and obesity, lowering the proportion of fat in the diet resulted in a small but noticeable decrease of body weight. When fat reduction was compared to carbohydrate reduction in weight loss trials, the latter was somewhat more efficacious to reduce weight than the former.

Source	Study cat- egory	Dis- ease	End point	Main nutri- tional theme	No. of in- cluded studies	No. of sub- jects	Subject group	Dura- tion	RR (95%CI)	Limita- tions	Conclu- sions	LOE
Bren- nan SF 2017 [59]	Sys- tematic review & meta- analysis of PCs	Breast cancer	Survival from breast cancer	Dietary fat, SFA	15 PCs	29241	Women with breast cancer	16 yrs.	There was no difference in risk of breast-cancer- specific death or all-cause death in the highest versus lowest category of total fat intake. Breast-cancer- specific death (n=4; HR=1.51; 95% CI: 1.09, 2.09; p < 0.01) was higher for women in the highest versus lowest category of saturated fat intake	Hetero- geneity be- tween studies; small sample size	Satu- rated fat intake was nega- tively as- sociated with breast cancer survival	II a
Zhao J 2016 [60]	Sys- tematic review & meta- analysis of PCs or case control studies	Endo- metrial cancer	Risk of new cancer	Dietary fat, SFA, MUFA, PUFA	7 PCs & 14 case controls	ap- prox. 15'000	Women	1 mo 10 yrs.	Endometrial cancer risk was signifi- cantly increased by 5% per 10% kilocalories from total fat intake (P=0.02) and by 17% per 10g/1000 kcal of saturated fat intake (P<0.001). 3 cohort studies showed significant inverse association between MUFA & cancer risk (odds ratio=0.84, 95% confidence inter- val= 0.73–0.98). No significant asso- ciations were found for PUFAs	Mea- sure- ment error linked to the nature of food fre- quen-cy ques- tion- naire	High intake of total fat and SFA was as- sociated with in- creased endo- metrial cancer risk. In addition, dietary MUFA was as- sociated with de- creased risk in cohort studies	II a

Cao Y 2016 [61]	Sys- tematic review & meta- analysis of PCs	Breast cancer	Risk of new cancer	Dietary fat, SFA, PUFA, MUFA	24 PCs	38262 & 1.4 Mio controls	Women	2- 25 yrs.	No association was observed between animal fat, vegeta- ble fat, SAFA, MUFA, PUFA, n-3 PUFA, n-6 PUFA and risk of breast cancer	No sub- groups of cancer types. FFQ are subject to error.	Dietary total fat and fatty acids might be not as- sociated with risk of breast cancer	II a
Xia H, 2015 [62]	Sys- tematic review & meta- analysis of PCs or case control studies	Breast cancer	Risk of new cancer	Dietary SFA	24 PCs & 28 case controls	35651 BC, 1.8 Mio con- trols	Women	Not stated	The associations between dietary SFA intake and risk of BC were 1.18 for case-control studies (high vs low intake, 95% confidence interval [CI]=.03-1.34) and 1.04 for cohort studies (95% CI=0.97-1.11)	Possible bias in case control studies (selec- tion & recall)	A rela- tionship was found between SFA in- take and incidence of BC in case– control studies, and of post- meno- pausal BC risk in case– control but not in cohort studies	II a
Han J 2015 [63]	Meta- analysis of obser- vational studies	Gastric cancer	Risk of new cancer	Dietary fat	22 stud- ies	approx. 8500 cases & 500'000 controls	Adults	Not stated	The S-RR was 1.18 with highest intake versus lowest intake of total fat (95% CI: 0.999– 1.39; n = 28; P< 0.001). There were positive associa- tions between SAFA intake (SRR = 1.31; 95%CI: 1.09–1.58; n = 18;P<0.001), and inverse associa- tion between PUFA intake (SRR = 0.77; 95%CI: 0.65–0.92; n = 16; P = 0.003)	Case control studies may in- troduce recall and se- lection bias, FFQ, mea- sure- ment errors etc.	Intake of total fat is po- tentially positively associ- ated with gastric cancer risk, and specific subtypes of fats ac- count for different effects	II a

Table 3: Dietary fat or fatty acid intake in relation to certain types of cancer.

List of meta-analyses published between 2012 and 2017.

These studies show that high intake of total fat and of SFA was associated with increased risk of cancer of breast, endometrium and stomach in some but not all observational studies.

Citation: Ulrich Keller. "Health Aspects of Nutritional Fats and Oils. A Review of Recent Findings". *Nutrition and Food Toxicology* 2.6 (2018): 488-516.

												511
Source	Study cat- egory	Disease	End point	Main nutri- tional theme	No. of in- cluded studies	No. of sub- jects	Sub- ject group	Dura- tion	RR (95%CI)	Limita- tions	Conclu- sion	LOE
Grosso G 2016 [64]	Review & meta- analysis of obser- vational studies	Depres- sion	Risk of new dis- ease	n-3 PUFA & fish	31 obser- vational studies	255'076 sub- jects, 20'000 cases with depres- sion	Adults	Not stated	Pooled risk estimates of depres- sion for extreme catego- ries of both total n-3 PUFA and fish-de-rived n-3 PUFA [EPA&DHA] resulted in decreased risk for the highest compared with the low-est intake (RR = 0.78, 95% CI:0.67, 0.92 and RR = 0.82, 95% CI:0.73, 0.92, respectively.	Design of the studies includ- ed and con- found- ding due to lack adjust- ment for certain vari- ables	Dietary n-3 PUFA intake is associ- ated with lower risk of depres- sion	II a
Zhang y, 2016 [65]	Meta- analysis of PCs	Demen- tia, Par- kinson disease	Risk of new dis- ease	n-3 PUFA & fish	21 PCs	18'1580 sub- jects, 4438 with cogni- tive impair- ment	Elderly adults, mostly > 65 yrs.	2.1-21 yrs.	A 1-serving/ wk. increment of die-tary fish was associated with lower risks of de- mentia (RR: 0.95; 95% CI: 0.90, 0.99; P = 0.042, I2 = 63.4%) and Alzhei-mer D. (RR: 0.93; 95% CI: 0.90, 0.95; P = 0.003, I2 = 74.8%). Pooled RRs of Mild Cog- nitive Impairment and Parkinson Disease were 0.711 (95% CI: 0.59, 0.82; P = 0.733, I2 = 0%) and 0.900 (95% CI: 0.80, 0.99; P = 0.221), respectively, for an 8-g/d incre- ment of PUFA intake. A 0.1- g/d increment of dietary DHA intake was associ- ated with lower risks of dementia (RR: 0.86; 95% CI: 0.76, 0.96; P=0.001).	Vitamin E intake ap- peared as the most- frequent con- found- ing factor	Marine- derived DHA was as- sociated with lower risk of demen- tia and Al- zheimer disease but without a linear dose-re- sponse relation	II a

Apple- ton KM, 2015 (Co- chrane) [66]	Meta- analysis of RCTs	Depres- sion	Risk of new dis- ease	n-3 PUFA & fish	25 RCTs	1'438	Adults	wks months	For the placebo comparison, n-3 PUFA supplemen- tation results in a small to modest benefit for de- pressive symp- tomology, com- pared to placebo: standardised mean difference (SMD) -0.30 (95% confi- dence interval (CI) -0.10 to -0.50	The quality of the evi- dence for all out- comes was judged as low to very low.	Possible benefit in severe depression (not in mild symptom- atology)	Ιa
Cooper RE, 2015 [67]	Meta- analysis of RCTs	Cogni- tive Impair- ment	Symp- toms	Ome- ga-3 PUFA	24 RCTs		Adults & chil- dren (with ADHD & related disor- ders)		n-3 PUFA supple- mentation, in the whole sample and the TD and ADHD+RD sub- group, did not show improve- ments in any of the cognitive perfor- mance measures. In those with low n-3 PUFA status, supplementation improved short- term memory.		There is some evi- dence that n-3 PUFA supple- mentation improves cognition in those who are n-3 PUFA defi- cient, but not in those who were sufficient.	Ia

Table 4: Dietary fat or fatty acid intake in relation to other endpoints (neurologic, psychiatric). List of meta-analyses published between 2012 and 2017.

The main findings of observational studies suggest that intake of long-chain n-3 fatty acids is associated with diminished incidence of cognitive impairment in elderly subjects, decreased risk of dementia and decreased risk of severe depression. Randomised controlled trials confirmed an improvement of cognition only in subjects which were n-3 PUFA deficient.show that high intake of total fat and of SFA was associated with increased risk of cancer of breast, endometrium and stomach in some but not all observational studies.

The main findings of observational studies suggest that intake of long-chain n-3 fatty acids is associated with diminished incidence of cognitive impairment in elderly subjects, decreased risk of dementia and decreased risk of severe depression. Randomised controlled trials confirmed an improvement of cognition only in subjects which were n-3 PUFA deficient.

Recent publications of large trials not reviewed in the meta-analyses of Tables 1-4

The PURE study showed that across 18 countries from 5 continents increased fat consumption was associated with lower total and cardiovascular disease mortality (Dehghan M., *et al.* [16]. The data showed there was a large socio-demographic and economic heterogeneity between these 18 countries with widely discrepant rates of total mortality. Countries with higher levels of income and education had both, higher rates of fat consumption and higher life expectancy. Therefore, there is a considerable likelihood of residual confounders- that other factors explained the higher life expectancy in countries with higher fat consumption.

The question whether high consumption of pro-inflammatory (n-6 polyunsaturated fatty acids) exert negative health effect is still debated. An new approach to this topic was taken by May-Wilson S., *et al.* [17]. These authors showed in a study using Mendelian

Citation: Ulrich Keller. "Health Aspects of Nutritional Fats and Oils. A Review of Recent Findings". *Nutrition and Food Toxicology* 2.6 (2018): 488-516.

randomisation analysis that a pro-inflammatory fatty acid profile (due to genetic factors) affected colorectal cancer risk. In particular, decreased risk of colon cancer was associated with high serum MUFAs and PUFA (linoleic) concentrations, and increased risk with high serum PUFA (arachidonic acid) and SFA (stearic acid) concentrations.

In a re-evaluation of the traditional diet-heart hypothesis, Ramsden., *et al.* analysed data of the Minnesota Coronary Experiment (1968-73) [18]. The authors concluded that available evidence from randomized controlled trials shows that replacement of saturated fat in the diet with linoleic acid effectively lowers serum cholesterol but does not translates a lower risk of death from coronary heart disease or all causes. Findings from the Minnesota Coronary Experiment add to growing evidence that incomplete publication has contributed to overestimation of the benefits of replacing saturated fat with vegetable oils rich in linoleic acid.

In order to assess the relationship between consumption of n-6 PUFA and total and cause specific mortality, Wu JH., *et al.* measured circulating n-6 PUFA in the Cardiovascular Health Study [19]. The authors found that circulating levels of LA, the major dietary n-6 PUFA, was related to lower total mortality and especially subtypes of CVD mortality in older adults. Other circulating n-6 PUFA, including AA, were not significantly associated with total or CVD mortality.

Propositions for specific changes of current nutritional guidelines such as those published in Switzerland [4] The recommendation that saturated fatty acids should be less than 10% of total energy consumption should be changed to that there is no convincing reason to limit the consumption to this range of consumption The consumption of vegetable oils should not be limited, and a detailed recommendation regarding the type of vegetable oil should not be given. The recommendation for long-chain n-3 PUFA should be limited to subjects with established cardiovascular disease [7].

Conflict of interest

The author declares to have not conflict of interest in the subject of this publication.

References

- Jensen MD., *et al.* "2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Obesity Society". *Circulation* 129.25-2 (2014): S102–138.
- 2. US Department of Health and Human Services. "Dietary guidelines for Americans 2010". (2010).
- 3. Colombani P., et al. Fette in der Ernährung. Expertenbericht der Eidgenössischen Ernährungskommission (2006): 1–50.
- 4. Keller U., *et al.* Fette in der Ernährung. Aktualisierte Empfehlungen der Eidgenössischen Ernährungskommission. (2012): 6.
- 5. WHO. "Diet, nutrition and the prevention of chronic diseases". WHO (2013).
- Visioli F and Bernardini E. "Extra virgin olive oil's polyphenols: biological activities". *Current Pharmaceutical Design* 17.8 (2011): 786-804.
- 7. Kromhout D., et al. The 2015 Dutch food-based dietary guidelines". European Journal of Clinical Nutrition 70.8 (2016): 869–878.
- U.S. Department of Health and Human Services and U.S. Department of Agriculture. "2015 2020 Dietary Guidelines for Americans". (2015).
- 9. Michas G., *et al.* "Dietary fats and cardiovascular disease: Putting together the pieces of a complicated puzzle". *Atherosclerosis* 234.2 (2014): 320–328.
- 10. Schwingshackl L., *et al.* "Food groups and risk of all-cause mortality: a systematic review and meta-analysis of prospective studies". *The American Journal of Clinical Nutrition* 105.6 (2017): 1462–1473.
- 11. O'Sullivan TA., *et al.* "Food Sources of Saturated Fat and the Association with Mortality: A Meta-Analysis". *American Journal of Public Health* 103.9 (2013): e31–42.
- 12. Brassard D., *et al.* "Comparison of the impact of SFAs from cheese and butter on cardio metabolic risk factors: a randomized controlled trial". *The American Journal of Clinical Nutrition* 105.4 (2017): 800–809.

- Thorning TK., *et al.* "Whole dairy matrix or single nutrients in assessment of health effects: current evidence and knowledge gaps". *The American Journal of Clinical Nutrition* 105.5 (2017): 1033–1045.
- 14. Mozaffarian D. "Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review". *Circulation* 133.2 (2016): 187–225.
- 15. Wu JHY., *et al.* "Omega-3 fatty acids and incident type 2 diabetes: a systematic review and meta-analysis". *British Journal of Nutrition* 107 (2012): S214–227.
- 16. Dehghan M., *et al.* "Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study". *The Lancet* 390.10107 (2017):2050–2062.
- 17. May-Wilson S., *et al.* "Pro-inflammatory fatty acid profile and colorectal cancer risk: A Mendelian randomisation analysis". *European Journal of Cancer* 84 (2017): 228–238.
- 18. Ramsden CE., *et al.* "Re-evaluation of the traditional diet-heart hypothesis: analysis of recovered data from Minnesota Coronary Experiment (1968-73)". *BMJ* 353 (2016): i1246.
- 19. Wu JH., *et al.* "Circulating Omega-6 Polyunsaturated Fatty Acids and Total and Cause-Specific Mortality: The Cardiovascular Health Study". *Circulation* 130.15 (2014): 1245–1253.
- 20. Harcombe Z., *et al.* "Evidence from prospective cohort studies does not support current dietary fat guidelines: a systematic review and meta-analysis". *British Journal of Sports Medicine* 51.24 (2017):1743–1749.
- 21. 21. Micha R., *et al.* "Etiologic effects and optimal intakes of foods and nutrients for risk of cardiovascular diseases and diabetes: Systematic reviews and meta-analyses from the Nutrition and Chronic Diseases Expert Group (NutriCoDE)". *PLOS ONE* 12.4 (2017): e0175149.
- 22. Micha R., *et al.* "Association between Dietary Factors and Mortality from Heart Disease, Stroke, and Type 2 Diabetes in the United States". *JAMA* 317.9 (2017): 912-924.
- 23. Alexander DD., *et al.* "A Meta-Analysis of Randomized Controlled Trials and Prospective Cohort Studies of Eicosapentaenoic and Docosahexaenoic Long-Chain Omega-3 Fatty Acids and Coronary Heart Disease Risk". *Mayo Clinic Proceedings* 92.1 (2017): 15–29.
- 24. Pimpin L., *et al.* "Is Butter Back? A Systematic Review and Meta-Analysis of Butter Consumption and Risk of Cardiovascular Disease, Diabetes, and Total Mortality". *PLOS ONE* 11.6 (2016): e0158118.
- 25. Souza RJ de., *et al.* "Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies". *BMJ* (2015): 351:h3978.
- 26. Hooper L., *et al.* "Reduction in saturated fat intake for cardiovascular disease". *Cochrane Database of Systematic Reviews* 10.6 (2015): CD011737.
- 27. Farvid MS., *et al.* "Dietary Linoleic Acid and Risk of Coronary Heart Disease: A Systematic Review and Meta-Analysis of Prospective Cohort Studies". *Circulation* 130.18 (2014): 1568–1578.
- 28. Wen YT., *et al.* "Effects of Omega-3 fatty acid on major cardiovascular events and mortality in patients with coronary heart disease: A meta-analysis of randomized controlled trials". *Nutrition, Metabolism & Cardiovascular Diseases* 24.5 (2014): 470-475.
- 29. Schwingshackl L and Hoffmann G. "Dietary fatty acids in the secondary prevention of coronary heart disease: a systematic review, meta-analysis and meta-regression". *BMJ* 4.4 (2014).
- 30. Chowdhury R., *et al.* "Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis". *Annals of Internal Medicine* 160.6 (2014): 398–406.
- 31. Goede J de., *et al.* "N-6 and N-3 Fatty Acid Cholesteryl Esters in Relation to Fatal CHD in a Dutch Adult Population: A Nested Case-Control Study and Meta-Analysis". *PLOS ONE* 8.5 (2013): e59408.
- 32. Ramsden CE., *et al.* "Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis". *BMJ* (2013): e8707–e8707.
- Pan A., et al. "α-Linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis". The American Journal of Clinical Nutrition 96.6 (2012): 1262-1273.
- 34. Kotwal S., *et al.* "Omega 3 Fatty Acids and Cardiovascular Outcomes: Systematic Review and Meta-Analysis." *Circulation: Cardiovascular Quality and Outcomes* 5.6 (2012): 808–818.

- 35. Hooper L., *et al.* "Reduced or modified dietary fat for preventing cardiovascular disease". *Cochrane Cochrane Database* (2012).
- 36. Schwingshackl L and Hoffmann G. "Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies". *Lipids in Health and Disease* 13.1 (2014): 154.
- 37. Cheng P., *et al.* "Can dietary saturated fat be beneficial in prevention of stroke risk? A meta-analysis". *Neurological Sciences* 37.7 (2016): 1089-1098.
- 38. Cheng P., *et al.* "BMI Affects the Relationship between Long Chain N-3 Polyunsaturated Fatty Acid Intake and Stroke Risk: a Meta-Analysis". *Scientific Reports* 5 (2015): 14161.
- 39. Martínez-González MA., *et al.* "Olive oil consumption and risk of CHD and/or stroke: a meta-analysis of case–control, cohort and intervention studies". *British Journal of Nutrition* 112.2 (2014): 248–259.
- 40. Larsson SC., *et al.* "Long-chain omega-3 polyunsaturated fatty acids and risk of stroke: a meta-analysis". *European Journal of Epidemiology* 27.12 (2012): 895–901.
- 41. Chowdhury R., *et al.* "Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: systematic review and meta-analysis". *BMJ* (2012): e6698.
- 42. Jovanovski E., *et al.* "The effect of alpha-linolenic acid on glycemic control in individuals with type 2 diabetes: A systematic review and meta-analysis of randomized controlled clinical trials". *Medicine* 96.21 (2017).
- 43. Wu JHY, *et al.* "Omega-6 fatty acid biomarkers and incident type 2 diabetes: pooled analysis of individual-level data for 39 740 adults from 20 prospective cohort studies". *The Lancet Diabetes & Endocrinology* 5.12 (2017): 965–974.
- 44. Schwingshackl L., *et al.* "Olive oil in the prevention and management of type 2 diabetes mellitus: a systematic review and metaanalysis of cohort studies and intervention trials". *Nutrition & Diabetes* 7.4 (2017): e262.
- 45. Lin N., *et al.* "What is the impact of n-3 PUFAs on inflammation markers in Type 2 diabetic mellitus populations?: a systematic review and meta-analysis of randomized controlled trials". *Lipids in Health and Disease* (2016) :133.
- 46. Qian F., *et al.* "Metabolic Effects of Monounsaturated Fatty Acid–Enriched Diets Compared With Carbohydrate or Polyunsaturated Fatty Acid–Enriched Diets in Patients With Type 2 Diabetes: A Systematic Review and Meta-analysis of Randomized Controlled Trials". *Diabetes Care* 39.8 (2016):1448–1457.
- Imamura F., *et al.* "Effects of Saturated Fat, Polyunsaturated Fat, Monounsaturated Fat, and Carbohydrate on Glucose-Insulin Homeostasis: A Systematic Review and Meta-analysis of Randomised Controlled Feeding Trials". *PLOS Medicine* 13.7 (2016): e1002087.
- 48. Abbott KA., *et al.* "Do ω-3 PUFAs affect insulin resistance in a sex-specific manner? A systematic review and meta-analysis of randomized controlled trials". *The American Journal of Clinical Nutrition* 104.5 (2016): 1470–1484.
- 49. Chen C., *et al.* "Effects of Omega-3 Fatty Acid Supplementation on Glucose Control and Lipid Levels in Type 2 Diabetes: A Meta-Analysis". *PLOS ONE* 10.10 (2015): e0139565.
- 50. Aronis KN., *et al.* "Effects of trans fatty acids on glucose homeostasis: a meta-analysis of randomized, placebo-controlled clinical trials". *The American Journal of Clinical Nutrition* 96.5 (2012): 1093–1099.
- 51. Zheng JS., *et al.* "Marine N-3 Polyunsaturated Fatty Acids Are Inversely Associated with Risk of Type 2 Diabetes in Asians: A Systematic Review and Meta-Analysis". *PLOS ONE* 7.9 (2012): 4452.
- 52. Zhou Y., *et al.* "Association of fish and n-3 fatty acid intake with the risk of type 2 diabetes: a meta-analysis of prospective studies". *British Journal of Nutrition* 108.3 (2012): 408-417.
- 53. Wallin A., *et al.* "Fish Consumption, Dietary Long-Chain n-3 Fatty Acids, and Risk of Type 2 Diabetes: Systematic review and metaanalysis of prospective studies". *Diabetes Care* 35.4 (2012): 918-929.
- 54. Alhazmi A., *et al.* "Macronutrient Intakes and Development of Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cohort Studies". *Journal of the American College of Nutrition* 31.4 (2012): 243-258.
- 55. Mansoor N., *et al.* "Effects of low-carbohydrate diets v. low-fat diets on body weight and cardiovascular risk factors: a meta-analysis of randomised controlled trials". *British Journal of Nutrition* 115.3 (2016): 466-479.
- 56. Tobias DK., *et al.* "Effect of low-fat diet interventions versus other diet interventions on long-term weight change in adults: a systematic review and meta-analysis". *The Lancet Diabetes & Endocrinology* 3.12 (2015): 968-979.

- 57. Sackner-Bernstein J., *et al.* "Dietary Intervention for Overweight and Obese Adults: Comparison of Low-Carbohydrate and Low-Fat Diets. A Meta-Analysis". *PLOS ONE* 10.10 (2015): 0139817.
- 58. Hooper L., et al. "Effects of total fat intake on body weight". Cochrane Database of Systematic Reviews (2015).
- 59. Brennan SF., *et al.* "Dietary fat and breast cancer mortality: A systematic review and meta-analysis". *Critical Reviews in Food Science and Nutrition* 57.10 (2017): 1999-2008.
- 60. Zhao J., et al. "Dietary fat intake and endometrial cancer risk: A dose response meta-analysis". Medicine 95.27 (2016): 4121.
- 61. Cao Y., *et al.* "Dietary total fat and fatty acids intake, serum fatty acids and risk of breast cancer: A meta-analysis of prospective cohort studies". *International Journal of Cancer* 138.8 (2016): 1894-1904.
- 62. Xia H., et al. "Meta-analysis of Saturated Fatty Acid Intake and Breast Cancer Risk". Medicine 94.52 (2015): 2391.
- 63. Han J., *et al.* "Dietary Fat Intake and Risk of Gastric Cancer: A Meta-Analysis of Observational Studies". *PLOS ONE* 10.9 (2015): 0138580.
- 64. Grosso G., *et al.* "Dietary n-3 PUFA, fish consumption and depression: A systematic review and meta-analysis of observational studies". *Journal of Affective Disorders* 205 (2016): 269-81.
- 65. Zhang Y., *et al.* "Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: a dose-response meta-analysis of 21 cohort studies". *The American Journal of Clinical Nutrition* 103.2 (2016): 330-340.
- 66. Appleton KM., et al. "Omega-3 fatty acids for depression in adults". The Cochrane Database of Systematic Reviews 11 (2015): 004692.
- 67. Cooper RE., *et al.* "Omega-3 polyunsaturated fatty acid supplementation and cognition: A systematic review and meta-analysis". *Journal of Psychopharmacology* 29.7 (2015): 753-763.

